[1] Huang W, Hu B, Shahidehpour M, et al. Preventive Scheduling for Reducing the Impact of Glaze Icing on Transmission Lines[J]. IEEE Transactions on Power Systems, 2022, 37(2): 1297~1310.
[2] Wu X L, Liao Y J, Yao L, et al. A Non-Percolative RGO/XLPE Composite with High Electrothermal Per-formance at High Voltage and Effective De/Anti-Icing for Transmission Lines[J]. Composites Science and Tech-nology, 2022, 230(Part 1): 109772.
[3] Janjua Z A, Turnbull B, Hibberd S, et al. Mixed Ice Ac-cretion on Aircraft Wings[J]. Physics of Fluids, 2018, 30(2): 027101.
[4] Chen Z, Xiong G G, Sun Y, et al. An Internet-of-Things-Enabled System for Road Icing Detection and Predic-tion[J]. IEEE Internet of Things Journal, 2022, 9(20): 20257~20269.
[5] Tang L P, Boubitsas D, Huang L M. Long-term Perfor-mance of Reinforced Concrete under a De-icing Road Environment[J]. Cement and Concrete Research, 2023, 164: 107039.
[6] Zhang L B, Zhang H X, Liu Z J, et al. Nano-silica Anti-icing Coatings for Protecting Wind-power Turbine Fan Blades[J]. Journal of Colloid and Interface Science, 2023, 630: 1~10.
[7] Yin X Y, Zhang Y, Wang D A, et al. Integration of Self-Lubrication and Near‐Infrared Photothermogenesis for Excellent Anti-Icing/Deicing Performance[J]. Advanced Func-tional Materials, 2015, 25(27): 4237~4245.
[8] Ramakrishna D M, Viraraghavan T. Environ-mental Im-pact of Chemical Deicers-A Review[J]. Water, Air, and Soil Pollution, 2005, 166(1): 49~63.
[9] Thomas S K, Cassoni R P, MacArthur C D. Aircraft An-ti-icing and De-icing Techniques and Modeling[J]. Jour-nal of Aircraft, 1996, 33(5): 841~854.
[10] 常士楠, 杨波, 冷梦尧, 等. 飞机热气防冰系统研究[J]. 航空动力学报, 2017, 32(5): 1025~1034.
[11] 杨军, 张靖周, 郭文, 等. 超疏水表面技术在发动机防冰部件中的应用[J]. 燃气涡轮试验与研究, 2013, 26(1): 58~62.
[12] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102~118.
[13] Barthlott W, Neinhuis C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces[J]. Planta, 1997, 202(1): 1~8.
[14] Boinovich L B, Emelyanenko A M. Anti-icing Potential of Superhydrophobic Coatings[J]. Mendeleev Com-munications, 2013, 23(1): 3~10.
[15] 冷梦尧, 常士楠, 丁亮. 不同浸润性冷表面上水滴碰撞结冰的数值模拟[J]. 化工学报, 2016, 67(7): 2784~2792.
[16] 韦存茜, 赵镭, 王永香, 等. 仿生超浸润材料在防覆冰涂层中的应用[J]. 涂料工业, 2019, 49(4): 80~87.
[17] Liu X, Min J C, Zhang X, et al. Supercooled Water Droplet Impacting-freezing Behaviors on Cold Superhy-drophobic Spheres[J]. International Journal of Multi-phase Flow, 2021, 141: 103675.
[18] Ding B, Wang H, Zhu X, et al. Water Droplet Impact on Superhydrophobic Surfaces with Various Inclinations and Supercooling Degrees[J]. International Journal of Heat and Mass Transfer, 2019, 138: 844~851.
[19] Gao S R, Jia Q H, Shi S H, et al. Experimental Study on Contact time of a Water Droplet Impact under Controlled Surface Temperature[J]. Physics of Fluids, 2024, 36(3): 037133.
[20] Zhang R, Hao P F, Zhang X W, et al. Supercooled Water Droplet Impact on Superhydrophobic Surfaces with Var-ious Roughness and Temperature[J]. International Jour-nal of Heat and Mass Transfer, 2018, 122: 395~402.
[21] 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学(E辑:技术科学), 2008, 38(3): 321~349.
[22] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006
[23] Gao T X, Luo Z B, He W, et al. Shedding of Water Droplets by the Dual Synthetic Jet[J]. Physics of Fluids, 2024, 36(2): 027110.
[24] Gao T X, Luo Z B, Zhou Y, et al. Water Droplet Transport on Superhydrophobic Surfaces Induced by the Dual Synthetic Jets[J]. Physics of Fluids, 2024, 36(9): 093312.
[25] Gao T X, Luo Z B, Zhou Y, et al. Reducing the Contact Time of Impacting Droplets on Superhydrophobic Sur-faces Using Dual Synthetic Jets[J]. International Com-munications in Heat and Mass Transfer, 2024, 159: 108095.
[26] Maitra T, Antonini C, Tiwari M K, et al. Supercooled Water Drops Impacting Superhydrophobic Textures[J]. Langmuir, 2014, 30(36): 10855~10861.
[27] Wang D H, Sun Q Q, Hokkanen M J, et al. Design of Robust Superhydrophobic Surfaces[J]. Nature, 2020, 582(7810): 55~59.
[28] Zhang X, Liu X, Wu X M, et al. Impacting-freezing Dynamics of a Supercooled Water Droplet on a Cold Surface: Rebound and Adhesion[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119997.
[29] Haynes W M. CRC Handbook of Chemistry and Phys-ics[M]. 95th ed. Boca Raton, Florida: CRC Press, 2014.
[30] Fan Y, Tan Y, Dou Y Y, et al. Reducing the Contact Time of Bouncing Droplets on Superhydrophobic Sur-faces: Foundations, Strategies and Applications[J]. Chemical Engineering Journal, 2023, 476: 146485.
[31] Zhang B, Sanjay V, Shi S L, et al. Impact Forces of Water Drops Falling on Superhydrophobic Surfaces[J]. Physical Review Letters, 2022, 129(10): 104501.