合成双射流抑制超疏水表面水滴撞击结冰研究

  • 高天翔 ,
  • 罗振兵 ,
  • 景向嵘 ,
  • 冯文杰 ,
  • 周岩 ,
  • 程盼
展开
  • 1. 国防科技大学
    2. 国防科技大学空天科学学院

收稿日期: 2025-01-23

  修回日期: 2025-04-18

  网络出版日期: 2025-04-25

基金资助

国家自然科学基金;湖南省科技创新计划资助;结冰与防除冰重点实验室基金;沈阳市飞机结冰与防除冰重点实验室基金

Research on the Suppression of Droplet Impact Freezing on Superhydrophobic Surfaces Using Dual Synthetic Jets

  • GAO Tian-Xiang ,
  • LUO Zhen-Bing ,
  • JING Xiang-Rong ,
  • FENG Wen-Jie ,
  • ZHOU Yan ,
  • CHENG Pan
Expand

Received date: 2025-01-23

  Revised date: 2025-04-18

  Online published: 2025-04-25

Supported by

National Natural Science Foundation of China;The science and technology innovation Program of Hunan Province

摘要

超疏水表面可通过促使撞击水滴回弹实现防冰,是防除冰领域研究的热点。但在实际结冰气象条件下,超疏水表面的性能可能会在水滴撞击过程中丧失,使得防冰失效。现有结果表明,常温条件下合成双射流的施加能够有效降低水滴撞击超疏水表面的接触时间,有增强防冰效果的潜力。本文在低温条件下进一步开展了水滴撞击超疏水表面结冰特性及合成双射流对此进行抑制的效果研究,并通过数值模拟揭示了合成双射流抑制结冰的机理,可为开发新型防除冰方法提供一定参考。

本文引用格式

高天翔 , 罗振兵 , 景向嵘 , 冯文杰 , 周岩 , 程盼 . 合成双射流抑制超疏水表面水滴撞击结冰研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31838

Abstract

Superhydrophobic surfaces can prevent icing by causing impacting water droplets to rebound, making them a hot topic in the field of anti-icing and de-icing research. However, in actual icing conditions, the performance of superhydrophobic surfaces may be lost during the water droplet impact process, rendering the anti-icing ineffective. Existing results indicate that the appli-cation of dual synthetic jets at ambient temperatures can effectively reduce the contact time of water droplets impacting super-hydrophobic surfaces, showing potential to enhance anti-icing effects. This paper further investigates the characteristics of water droplet impact and icing on superhydrophobic surfaces under low-temperature conditions, as well as the effects of dual synthetic jets in inhibiting this process. The mechanism by which dual synthetic jets inhibit icing is revealed through numerical simulations, providing a reference for the development of new anti-icing and de-icing methods.

参考文献

[1] Huang W, Hu B, Shahidehpour M, et al. Preventive Scheduling for Reducing the Impact of Glaze Icing on Transmission Lines[J]. IEEE Transactions on Power Systems, 2022, 37(2): 1297~1310.
[2] Wu X L, Liao Y J, Yao L, et al. A Non-Percolative RGO/XLPE Composite with High Electrothermal Per-formance at High Voltage and Effective De/Anti-Icing for Transmission Lines[J]. Composites Science and Tech-nology, 2022, 230(Part 1): 109772.
[3] Janjua Z A, Turnbull B, Hibberd S, et al. Mixed Ice Ac-cretion on Aircraft Wings[J]. Physics of Fluids, 2018, 30(2): 027101.
[4] Chen Z, Xiong G G, Sun Y, et al. An Internet-of-Things-Enabled System for Road Icing Detection and Predic-tion[J]. IEEE Internet of Things Journal, 2022, 9(20): 20257~20269.
[5] Tang L P, Boubitsas D, Huang L M. Long-term Perfor-mance of Reinforced Concrete under a De-icing Road Environment[J]. Cement and Concrete Research, 2023, 164: 107039.
[6] Zhang L B, Zhang H X, Liu Z J, et al. Nano-silica Anti-icing Coatings for Protecting Wind-power Turbine Fan Blades[J]. Journal of Colloid and Interface Science, 2023, 630: 1~10.
[7] Yin X Y, Zhang Y, Wang D A, et al. Integration of Self-Lubrication and Near‐Infrared Photothermogenesis for Excellent Anti-Icing/Deicing Performance[J]. Advanced Func-tional Materials, 2015, 25(27): 4237~4245.
[8] Ramakrishna D M, Viraraghavan T. Environ-mental Im-pact of Chemical Deicers-A Review[J]. Water, Air, and Soil Pollution, 2005, 166(1): 49~63.
[9] Thomas S K, Cassoni R P, MacArthur C D. Aircraft An-ti-icing and De-icing Techniques and Modeling[J]. Jour-nal of Aircraft, 1996, 33(5): 841~854.
[10] 常士楠, 杨波, 冷梦尧, 等. 飞机热气防冰系统研究[J]. 航空动力学报, 2017, 32(5): 1025~1034.
[11] 杨军, 张靖周, 郭文, 等. 超疏水表面技术在发动机防冰部件中的应用[J]. 燃气涡轮试验与研究, 2013, 26(1): 58~62.
[12] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102~118.
[13] Barthlott W, Neinhuis C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces[J]. Planta, 1997, 202(1): 1~8.
[14] Boinovich L B, Emelyanenko A M. Anti-icing Potential of Superhydrophobic Coatings[J]. Mendeleev Com-munications, 2013, 23(1): 3~10.
[15] 冷梦尧, 常士楠, 丁亮. 不同浸润性冷表面上水滴碰撞结冰的数值模拟[J]. 化工学报, 2016, 67(7): 2784~2792.
[16] 韦存茜, 赵镭, 王永香, 等. 仿生超浸润材料在防覆冰涂层中的应用[J]. 涂料工业, 2019, 49(4): 80~87.
[17] Liu X, Min J C, Zhang X, et al. Supercooled Water Droplet Impacting-freezing Behaviors on Cold Superhy-drophobic Spheres[J]. International Journal of Multi-phase Flow, 2021, 141: 103675.
[18] Ding B, Wang H, Zhu X, et al. Water Droplet Impact on Superhydrophobic Surfaces with Various Inclinations and Supercooling Degrees[J]. International Journal of Heat and Mass Transfer, 2019, 138: 844~851.
[19] Gao S R, Jia Q H, Shi S H, et al. Experimental Study on Contact time of a Water Droplet Impact under Controlled Surface Temperature[J]. Physics of Fluids, 2024, 36(3): 037133.
[20] Zhang R, Hao P F, Zhang X W, et al. Supercooled Water Droplet Impact on Superhydrophobic Surfaces with Var-ious Roughness and Temperature[J]. International Jour-nal of Heat and Mass Transfer, 2018, 122: 395~402.
[21] 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学(E辑:技术科学), 2008, 38(3): 321~349.
[22] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006
[23] Gao T X, Luo Z B, He W, et al. Shedding of Water Droplets by the Dual Synthetic Jet[J]. Physics of Fluids, 2024, 36(2): 027110.
[24] Gao T X, Luo Z B, Zhou Y, et al. Water Droplet Transport on Superhydrophobic Surfaces Induced by the Dual Synthetic Jets[J]. Physics of Fluids, 2024, 36(9): 093312.
[25] Gao T X, Luo Z B, Zhou Y, et al. Reducing the Contact Time of Impacting Droplets on Superhydrophobic Sur-faces Using Dual Synthetic Jets[J]. International Com-munications in Heat and Mass Transfer, 2024, 159: 108095.
[26] Maitra T, Antonini C, Tiwari M K, et al. Supercooled Water Drops Impacting Superhydrophobic Textures[J]. Langmuir, 2014, 30(36): 10855~10861.
[27] Wang D H, Sun Q Q, Hokkanen M J, et al. Design of Robust Superhydrophobic Surfaces[J]. Nature, 2020, 582(7810): 55~59.
[28] Zhang X, Liu X, Wu X M, et al. Impacting-freezing Dynamics of a Supercooled Water Droplet on a Cold Surface: Rebound and Adhesion[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119997.
[29] Haynes W M. CRC Handbook of Chemistry and Phys-ics[M]. 95th ed. Boca Raton, Florida: CRC Press, 2014.
[30] Fan Y, Tan Y, Dou Y Y, et al. Reducing the Contact Time of Bouncing Droplets on Superhydrophobic Sur-faces: Foundations, Strategies and Applications[J]. Chemical Engineering Journal, 2023, 476: 146485.
[31] Zhang B, Sanjay V, Shi S L, et al. Impact Forces of Water Drops Falling on Superhydrophobic Surfaces[J]. Physical Review Letters, 2022, 129(10): 104501.
文章导航

/