直升机扫雷系统跨介质刚柔耦合建模与配平分析

  • 王洛烽 ,
  • 陈仁良 ,
  • 冯瑞
展开
  • 南京航空航天大学

收稿日期: 2025-02-26

  修回日期: 2025-04-12

  网络出版日期: 2025-04-17

基金资助

直升机动力学全国重点实验室基金项目;国家自然科学基金;中国博士后基金;旋翼空气动力学重点实验室基金项目;航空科学基金项目;江苏省卓越博士后计划资助;江苏高校优势学科建设工程资助项目

Cross-Medium Rigid-Flexible Coupled Modeling and Trim Analysis of the Helicopter Mine-Clearing Systems

  • WANG Luo-Feng ,
  • CHEN Ren-Liang ,
  • FENG Rui
Expand

Received date: 2025-02-26

  Revised date: 2025-04-12

  Online published: 2025-04-17

摘要

水雷严重威胁海上安全,直升机扫雷相比传统船舶扫雷部署快、效率高、危险低,但目前仍缺乏公开适用的建模理论和分析方法。本文基于绝对节点坐标法建立了跨介质大柔性拖缆模型,发展了易于耦合集成的直升机和拖体的刚体动力学模型,构建并验证了直升机扫雷系统跨介质刚柔耦合模型,提出了耦合系统的分块配平方法,分析了关键设计参数和飞行参数对配平特性的影响,结果表明:飞行速度增大时,直升机低头姿态加重,将拖点位置布置在重心后上方可改善姿态;转弯时,拖缆拉力抑制直升机滚转运动,需增加横向操纵提供转弯向心力;飞行高度降低和拖缆长度增加难以有效增加拖体深度,必须在拖体上加装迫沉部件。

本文引用格式

王洛烽 , 陈仁良 , 冯瑞 . 直升机扫雷系统跨介质刚柔耦合建模与配平分析[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31900

Abstract

Naval mines present a severe threat to maritime safety. Helicopter-based mine clearing, compared to traditional ship-based methods, offers faster deployment, higher efficiency, and lower risk. However, there is still a lack of publicly available modeling theories and analytical methods applicable to such systems. This paper establishes a cross-medium large-flexible towing cable model based on the Absolute Node Coordinate Formulation (ANCF). Additionally, a rigid-body dynamics model for the helicopter and towing body, which facilitates easy coupling integration, is developed. The cross-medium rigid-flexible coupling model for the helicopter mine-clearing system is constructed and validated. A partitioned trim method for the coupled system is proposed, and the effects of key design and flight parameters on trim characteristics are analyzed. The results show that: as flight speed increases, helicopter nose-down attitude intensi-fies; placing the towing point behind and above the center of gravity improves the attitude; during turns, the towing cable tension suppresses helicopter roll motion, requiring additional lateral control to provide centripetal force for turn-ing; decreasing flight altitude and increasing towing cable length does not significantly increase the towing body depth, necessitating the installation of sinking components on the towing body.

参考文献

[1] HANDLER E H. The helicopter-towed hydrofoil sea pallet[J]. Journal of the American Helicopter Society, Vertical Flight Society, 1961, 6(3): 22–26.
[2] WARD R S, LARRABEE R M. A towed planing hull sled for fast surface delivery of pollution control equipment[J]. Naval Engineers Journal, 1977, 89(2): 129–137.
[3] XIN H, HE C. A high fidelity simulation model for comprehensive analysis of rotorcraft towing operations[C]//American Helicopter Society 59th Annual Forum. Phoenix, Arizona: 2003.
[4] SRIDHARAN A, CELI R. Flight dynamics and control of a rotorcraft towing a submerged load[C]//the AHS 69th Annual Forum. Phoenix, Arizona: 2013.
[5] CELI R. HeliUM 2 Flight dynamic simulation model:development, technical concepts, and ap-plications[C]//the AHS 71st Annual Forum. Vir-ginia Beach, VA: 2015.
[6] SRIDHARAN A, CELI R. On the role of cable curvature in rotorcraft-based tow operations for submerged loads[C]//Vertical Flight Society 70th Annual Forum & Technology Display. Montréal, Québec: The Vertical Flight Society, 2014: 1–23.
[7] KAMMAN J W, HUSTON R L. Multibody dy-namics modeling of variable length cable sys-tems[J]. Multibody System Dynamics, 2001, 5(3): 211–221.
[8] LIU Q, BAO J, SHAO Y, et al. Dynamic modeling and underwater configuration analysis of fiber op-tic cable for UUV-launched UAV[J]. Ocean Engi-neering, 2024, 303.
[9] BUCKHAM B, DRISCOLL F R, NAHON M. De-velopment of a finite element cable model for use in low-tension dynamics simulation[J]. Journal of Applied Mechanics, Transactions ASME, 2004, 71(4): 476–485.
[10] SUN F J, ZHU Z H, LAROSA M. Dynamic mod-eling of cable towed body using nodal position fi-nite element method[J]. Ocean Engineering, 2011, 38(4): 529–540.
[11] ZHAO Y, LI G, LIAN L. Numerical model of towed cable body system validation from sea trial experimental data[J]. Ocean Engineering, 2021, 226.
[12] SHABANA A A. Dynamics of multibody sys-tems[M]. New York: Cambridge University Press, 2005.
[13] PARK J, KIM N. Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable[J]. International Jour-nal of Naval Architecture and Ocean Engineering, 2015, 7(2): 409–425.
[14] ZONG L, ZHU X, WEI Z, et al. Shape correction of deep-towed seismic arrays by using floaters and a cone-shaped drogue[J]. Ocean Engineering, 2024, 310.
[15] YANG S, REN H, ZHU X. Dynamic modeling of cable deployment/retrieval based on ALE-ANCF and adaptive step-size integrator[J]. Ocean Engi-neering, 2024, 309.
[16] WANG L, CHEN R. Nonlinear helicopter rigid-elastic coupled modeling with its applications on aeroservoelasticity analysis[J]. AIAA Journal, 2022, 60(1): 102–112.
[17] 王洛烽, 陈仁良. 吊挂飞行对重型直升机空中共振稳定性的影响机理分析[J]. 航空学报, 2023, 44(16): 1–10.
WANG L, CHEN R. Effects of slung load on heavy lift helicopter air resonance stability [J], Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 1–10. (in Chinese)
[18] WANG L, CHEN R. Handling qualities assess-ment and discussion for helicopter with slung load systems utilizing various sling configura-tions[J]. Aerospace, 2024, 11(9): 711.
[19] CHOC Y-I, CASARELL M J. Hydrodynamic re-sistance of towed cables[J]. Journal of Hydro-nautics, 1971, 5(4): 126–131.
[20] KNUTSON R K, EISENBERG. At-sea hydrody-namic evaluation of bare double-armored tow ca-bles[R]. ADA239874, Bethesda, Maryland: 1991.
[21] SRIDHARAN A. Simulation modeling of flight dynamics, control and trajectory optimization of rotorcraft towing submerged loads[D]. University of Maryland, College Park, 2014.
文章导航

/