飞机翼面冰的结构建模与力学性能预测

  • 汤林 ,
  • 孟宣市 ,
  • 刘蕊迪 ,
  • 顾兴士 ,
  • 易贤
展开
  • 1. 西北工业大学
    2. 国空气动力研究与发展中心
    3. 空天飞行空气动力科学与技术全国重点实验室
    4. 中国空气动力研究与发展中心

收稿日期: 2025-02-26

  修回日期: 2025-04-14

  网络出版日期: 2025-04-17

基金资助

飞行过程中翼面动态增长冰的断裂机理及脱落特性研究

Structural modeling and mechanical properties prediction of aircraft wing ice

  • TANG Lin ,
  • MENG Xuan-Shi ,
  • LIU Rui-Di ,
  • GU Xing-Shi ,
  • YI Xian
Expand

Received date: 2025-02-26

  Revised date: 2025-04-14

  Online published: 2025-04-17

摘要

飞机飞行过程中过冷水撞击低温表面结冰是典型的动态相变过程,形成的翼面冰内包含气泡孔隙,严重影响翼面冰力学性能。然而,现有研究对翼面冰力学性能的定量研究不足,难以为适航取证中翼面冰断裂脱落危害的评估提供依据。本文研究了过冷水滴撞击低温表面形成的翼面冰的力学性能,尤其是孔隙率、孔隙形状(以球度表征)等对其力学性能的影响。基于结冰风洞中模拟的实际飞行环境,针对不同马赫数(0.21-0.32)下的翼面冰样本,通过单轴压缩实验测量了其杨氏模量。结果表明,翼面冰的杨氏模量与孔隙率高度相关,孔隙率越高,杨氏模量各向异性表现越明显。本研究提出了一种基于孔隙率和孔隙球度的力学性能预测模型,能有效模拟不同结冰条件下的翼面冰杨氏模量变化。研究结果可为翼面冰的力学性能预测及断裂脱落危害评估提供理论支撑。

本文引用格式

汤林 , 孟宣市 , 刘蕊迪 , 顾兴士 , 易贤 . 飞机翼面冰的结构建模与力学性能预测[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31895

Abstract

The ice formation caused by supercooled water droplets impacting low-temperature surfaces during aircraft flight is a typical dynamic phase transition process. The resulting wing ice contains air bubbles and pores, which significantly affect its mechanical properties. However, existing research lacks quantitative analysis of the mechanical performance of wing ice, making it difficult to support hazard assessment of ice fracture and shedding during airworthiness certifica-tion. This paper investigates the mechanical properties of wing ice formed by supercooled droplet impingement, par-ticularly focusing on the effects of porosity and pore morphology (characterized by sphericity). By simulating real-flight conditions in the icing wind tunnel, uniaxial compression tests were conducted on wing ice samples at various Mach numbers (0.21-0.33) to measure their Young's modulus. The results demonstrate that the Young's modulus of wing ice is highly correlated with porosity, showing increasingly pronounced anisotropy at higher porosity levels. A predictive model based on porosity and pore sphericity is proposed, effectively simulating Young's modulus variations under dif-ferent icing conditions. These findings provide theoretical support for predicting mechanical properties of wing ice and assessing fracture/shedding risks.

参考文献

[1]李伟斌, 魏东, 杜雁霞, 等.动态结冰微观孔隙结构定量分析[J].航空学报, 2018, 39(2):121536-
[2]李伟斌, 马洪林, 易贤, 杜雁霞, 赵凡.温度对动态结冰微观结构特性影响定量分析[J].空气动力学学报, 2019, 37(05):748-753
[3]REID T, BARUZZI G S, ALIAGA C, et al.FENSAP-ICE: Application of Unsteady CHT to De-icing Simula-tions on a Wing with Inter-Cycle Ice For-mation[C]//2010 AIAA Atmospheric and Space Envi-ronments Conference. USA: American Institute of Aeronautics and Astronautics, 2010:7835.
[4]ESKANDARIAN M.Ice shedding from overhead electrical lines by mechanical breaking: A ductile model for vis-coplastic behaviour of atmospheric ice[D]. Canada: Universite du Quebeca Chicoutimi, 2005:54-69.
[5]SCHULSON E M, DUVAL P..Creep and Fracture of Ice[M]. UK: Cambridge University Press, 2009:131-157.
[6]李志军, 康建成.北极生长的多年海冰晶体结构分析[J].冰川冻土, 2001, 23(4):383-388
[7]MAUS S, BAHAFID S, HENDRIKS M, et al.X-ray micro-tomographic imaging and modelling of saline ice properties in concrete frost salt scaling experiments[J].Cold Regions Science and Technology, 2023, 208: 103780., 2023, 208:103780-
[8]FRANTZ C M, LIGHT B, FARLEY SM, et al.Physical and optical characteristics of heavily melted “rotten” arc-tic sea ice[J].The Cryosphere, 2019, 13(3):775-793
[9]OGGIER M, EICKEN H.Seasonal evolution of granular and columnar sea ice pore microstructure and pore network connectivity[J].Journal of Glaciology, 2022, 68(271):833-848
[10]MAUS S, SCHNEEBELI M, WIEGMANN A.An x-ray micro-tomographic study of the pore space,permeability and percolation threshold of young sea ice[J].The Cry-osphere, 2021, 15(8):4047-4072
[11]SALOMON M L, MAUS S, PETRICH C.Microstructure evolution of young sea ice from a svalbard fjord using micro-ct analysis[J].Journal of Glaciology, 2021, 68(269):571-590
[12]MAUS S.The plate spacing of sea ice[J].Annals of Glaciology, 2020, 61(83):408-425
[13]LI S, LIU S, YUAN S, et al.Reflection of acoustic wave through multilayered porous sea ice sandwiched be-tween the water and air half-spaces[J].Applied Sci-ences, 2021, 11(16):7411-
[14]ZONG Z.A random pore model of sea ice for predicting its mechanical properties[J].Cold Regions Science and Technology, 2022, 195:103473-
[15]李伟斌, 宋超, 易贤, 等.动态结冰孔隙结构三维建模方法[J].化工学报, 2020, 71(03):1009-1017
[16]NIYOGI S, SEN G B.Mechanical properties and pore size distribution in athermal porous glasses[J].Soft Matter, 2021, 17(42):9716-9724
[17]SHIMAKI Y, ARAKAWA M.Experimental study on colli-sional disruption of highly porous icy bodies[J].Icarus, 2012, 218(2):737-750
[18]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 31930-2015[S]. 北京:中国标准出版社, 2015:5-10.
[19]徐梓竣.乌梁素海湖冰单轴压缩强度试验研究[D]. 大连: 大连理工大学, 2018:46-66.
[20]BARRETTE P D, JORDAAN I J.Pressure-temperature effects on the compressive behavior of laboratory-grown and iceberg ice[J].Cold Regions Science & Technology, 2003, 36(3):25-36
[21]ZHANG Y, QIAN Z, HUANG W, et al.Effect of grain size on the uniaxial compressive strength of ice forming with different wind speeds in a cold laboratory[J].Water, 2024, 16:2049-
文章导航

/