空间惯性传感器检验质量动力学与控制研究进展

  • 吴树范 ,
  • 孙笑云 ,
  • 张倩云 ,
  • 沈强 ,
  • 向煜
展开
  • 上海交通大学

收稿日期: 2025-01-08

  修回日期: 2025-04-09

  网络出版日期: 2025-04-10

基金资助

科技部国家重点研发计划;科技部国家重点研发计划

摘要

本文以空间引力波探测任务为背景,综述了无拖曳航天器内部用于提供精确惯性参考基准的空间惯性传感器在动力学建模、控制策略确定及控制器设计方面的前沿研究进展。 本文首先介绍了空间惯性传感器在空间引力波探测任务中的作用与结构配置,提供了解析的传感器电压驱动过程,并介绍了对应的传感器工作模式。 然后,在两种引力波探测任务对应的无拖曳航天器构型下,描述了惯性传感器内部多参考质量的动力学模型建立过程。 随后, 针对探测任务需求,综述了惯性传感器静电悬浮控制的相应问题和方法,描述了针对空间惯性传感器静电悬浮控制问题研究的必要性和紧迫性, 并对该控制技术的前沿研究问题进行了总结与展望。

本文引用格式

吴树范 , 孙笑云 , 张倩云 , 沈强 , 向煜 . 空间惯性传感器检验质量动力学与控制研究进展[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31781

参考文献

[1] 王楠. 深空引力波探测的无拖曳控制技术研究[D].上海交通大学,2020. [2] 吴树范,王楠,龚德仁.引力波探测科学任务关键技术[J].深空探测学报,2020,7(02):118-127. [3] Bencze W J, DeBra D B, Herman L, et al. On-orbit performance of the Gravity Probe B drag-free translation control system[C]//Proc. 29th Guidance and Control Conference. American Astronautical Society, Breckenridge, Colorado. 2006. [4] Canuto E, Bona B, Calafiore G, et al. Drag free control for the European satellite GOCE. Part II: digital control[C]//Proceedings of the 41st IEEE Conference on Dec惯性传感器ion and Control, 2002. IEEE, 2002, 4: 4072-4077. [5] Gath P, Schulte H R, Weise D, et al. Drag free and attitude control system design for the LISA science mode[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. 2007: 6731. [6] F. Mobley, G. Fountain, A. Sadilek, P. Worden and R. Patten, Electromagnetic suspension for the tip-II satellite[J]. IEEE Transactions on Magnetics, vol. 11, no. 6, pp. 1712-1716, November 1975. [7] Lange B. Managing spherical proof masses in dragfree satellites with application to the LISA experiment[J]. Classical and Quantum Gravity, 2001, 18(19): 4153. [8] 吴树范,张倩云,刘梅林,沈强.空间引力波探测惯性传感器关键技术与进展[J/OL].中国空间科学技术, 2023:1-10. [9] Zhang Q , Liu M L, and Wu S F. Design and test of the actuation circuit of the inertial sensor for space gravitational wave detection based on hardware-inthe-loop simulation [J]. Classical and Quantum Gravity, 40 (2023) 115001. [10] 吴树范,孙笑云,张倩云等.空间引力波探测航天器平台系统前沿研究进展[J].深空探测学报(中英文),2023,10(03):233-246. [11] 张立华,黎明,高永新,胡越欣,王凤彬,张涛.空间引力波探测航天器系统及平台技术[J].中山大学学报(自然科学版),2021,60(Z1):129-137. [12] 施梨,曹喜滨,张锦绣,张世杰,董晓光.无阻力卫星发展现状[J].宇航学报,2010,31(06):1511-1520. [13] Fichter W, Schleicher A, Vitale S. Drag-free control design with cubic test masses[M]//Lasers, Clocks and Drag-Free Control. Springer, Berlin, Heidelberg,2008: 361-378. [14] 李洪银,叶小容,刘佳恒,张德轩,单莹,高鑫.天琴无拖曳控制研究的关键问题[J].中山大学学报(自然科学版),2021,60(Z1):213-224. [15] 李卓. “太极”空间引力波探测编队飞行轨道优化设计与分析[D].中国科学院大学(中国科学院国家空间科学中心),2020. [16] Sun X, Shen Q and Wu S, Self-Triggered Fuzzy Data-Driven Learning-Based Test Mass Suspension Control for Space Inertia Sensor[J], IEEE Transactions on Aerospace and Electronic Systems,doi: 10.1109/TAES.2024.3418940. [17] 孙笑云,吴树范,沈强.空间惯性传感器数据驱动自适应非对称约束控制[J].深空探测学报(中英文),2023,10(03):322-333. [18] 杨飞,谈树萍,薛文超,郭金,赵延龙.饱和约束测量扩张状态滤波与无拖曳卫星位姿自抗扰控制[J]. 自动化学报,2020,46(11):2337-2349. [19] 罗子人,张敏,靳刚,吴岳良,胡文瑞.中国空间引力波探测“太极计划”及“太极 1 号”在轨测试[J].深空探测学报,2020,7(01):3-10. [20] Wu S F, Fertin D. Spacecraft drag-free attitude control system design with quantitative feedback theory[J]. Acta Astronautica, 2008, 62(12): 668-682. [21] Fichter W, Gath P, Vitale S, et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity, 2005, 22(10): S139. [22] 孙笑云,吴树范,沈强. 包含有界切换增益的空间惯性传感器输出调节积分模型参考自适应控制[J].中国科学:技术科学,2023:1-12. [23] Lian X, Zhang J, Lu L, et al. Frequency Separation Control for Drag free Satellite With Frequency Domain Constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021. [24] 苟兴宇,王丽娇,李明群,蒋庆华,王绍凯.天琴一号卫星加速度模式无拖曳控制[J].宇航学报, 2021,42(05):603-610. [25] 马浩君,韩鹏,高东,郑建华.深空双质量块无拖曳卫星 H∞鲁棒控制器设计[J].哈尔滨工业大学学报,2021,53(02):1-13. [26] McNamara P, Vitale S, Danzmann K, et al. LISA pathfinder[J]. Classical and quantum gravity, 2008,25(11): 114034. [27] 张锦绣,董晓光,曹喜滨.基于无速度测量的无拖曳卫星自适应控制方法[J].宇航学报, 2014, 35(04):447-453. [28] Antonucci F, Armano M, Audley H, et al. The LISA pathfinder mission[J]. Classical and Quantum Gravity, 2012, 29(12): 124014. [29] Anza S, Armano M, Balaguer E, et al. The LTP experiment on the LISA Pathfinder mission[J]. Classical and Quantum Gravity, 2005, 22(10): S125. [30] 罗俊,艾凌皓,等.天琴计划简介[J].中山大学学报(自然科学版),2021,60(Z1):1-19. [31] Klotz H, Strauch H, Wolfsberger W, et al. Drag-free attitude and orbit control for LISA[C]//Spacecraft Guidance, Navigation and Control Systems. 1997, 381: 695. [32] Pettazzi L, Lanzon A, Theil S, et al. Design of robust drag-free controllers with given structure[J]. Journal of guidance, control, and dynamics, 2009, 32(5):1609-1621. [33] Maghami P G, O'Donnell J R, Hsu O H, et al. Dragfree performance of the ST7 disturbance reduction system flight experiment on the LISA Pathfinder[J]. 2017. [34] Gath P, Fichter W, Kersten M, et al. Drag free and attitude control system design for the LISA pathfinder mission[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. 2004: 5430. [35] Fichter W, Schleicher A, Bennani S, Wu S F,. Closed loop performance and limitations of the LISA Pathfinder drag-free control system[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.2007: 6732. [36] 张锦绣,曹喜滨,董晓光,王继河.Drag-free卫星编队的发展现状和趋势研究[J].哈尔滨工业大学学报,2010,42(05):673-677. [37] Theil S. Drag-free satellite control[M]//Lasers, Clocks and Drag-Free Control. Springer, Berlin, Heidelberg, 2008: 341-359. [38] Canuto E, Massotti L. Local orbital frame predictor for LEO drag-free satellite[J]. Acta Astronautica,2010, 66(3-4): 446-454. [39] Speake C C, Aston S M. An interferometric sensor for satellite drag-free control[J]. Classical and Quantum Gravity, 2005, 22(10): S269. [40] 张永合,梁旭文,张健,胡庆雷.无阻力双星串行编队相对位置有限时间控制[J].宇航学报, 2015, 36(08): 923-931. [41] Giulicchi L., Wu S F., & Fenal, T. "Attitude and Orbit Control Systems for LISA Pathfinder Spacecraft",Aerospace Science and Technology, Vol.24, No.24,pp283-294 2013. [42] Sun X, Shen Q and Wu S F, Partial State Feedback MRAC Based Reconfigurable Fault-Tolerant Control of Drag-Free Satellite With Bounded Estimation Error[J]. IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 5, pp. 6570-6586, Oct.2023, doi: 10.1109/TAES.2023.3276342. [43] 孙笑云,吴树范,沈强.基于卡尔曼滤波的输出调节自 适 应 无 拖 曳 控 制 [J]. 深 空 探 测 学 报 ( 中 英文),2023,10(03):283-291. [44] Sechi G, Buonocore M, Cometto F, et al. In-flight results from the drag-free and attitude control of GOCE satellite[J]. IFAC Proceedings Volumes, 2011, 44(1): 733-740. [45] 张永合,梁旭文,周远强,郭延宁,马广富.无阻力双星编队的满系数矩阵MIMO定量反馈控制[J].宇航学报,2016,37(07):819-828. [46] Fichter W, Schleicher A, Szerdahelyi L, et al. Dragfree control system for frame dragging measurements based on cold atom interferometry[J]. Acta Astronautica, 2005, 57(10): 788-799. [47] De Cordova S S F, DeBra D B. Mass center estimation of a drag-free satellite[J]. IFAC Proceedings Volumes, 1975, 8(1): 264-271. [48] 曹喜滨,施梨,董晓光,王峰.基于干扰观测的无阻力卫星控制器设计[J].宇航学报,2012,33(04):411-418. [49] Sun X, Shen Q and Wu S F, Event-triggered robust model reference adaptive control for drag-free satellite[J], Advances in Space Research, vol. 72, no. 11, pp. 4984-4996, Dec. 2023, doi:10.1016/j.asr.2023.09.024. [50] Caprini C, Tamanini N. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission[J]. Journal of Cosmology and Astroparticle Physics,2016(10): 006. [51] Sun X, Shen Q and WU S F, Fuzzy Supervosed Learning-Based Model-Free Adaptive Fault-Tolerant Spacecraft Attitude Control With Deferred Asymmetric Constraints[J], IEEE Transactions on Aerospace and Electronic Systeums, vol. 59, no. 6, pp. 8884-8900, Dec. 2023, doi: 10.1109/ TAES.2023.3312363. [52] 孙笑云,沈强,吴树范.基于改进Kinky Inference的输出调节自适应无拖曳控制[J/OL].北京航空航天大学学报, 2023:1-16. [53] 孙笑云,吴树范,沈强.基于LMI的输出跟踪自适应鲁棒无拖曳控制[J].航空学报,2023,44(S1):48-58. [54] Wu S F, Giulicchi L, Fenal T, et al. Attitude Control of LISA Pathfinder Spacecraft with Micro-Newton FEEP Thrusters under Multiple Failures[C]//AIAA Guidance, Navigation, and Control Conference.2010: 8199.
文章导航

/