熔滴复合电弧增材制造中,连续可控的单分散熔滴流与倾斜钨极惰性气体(tungsten inert gas welding, TIG)电弧熔池的交互作用,决定了堆积层表面形貌、内部组织和制造缺陷等。为探明熔滴过渡模式对堆积层形貌的影响规律,基于计算流体力学法构建了熔滴复合电弧增材制造过程三维瞬态熔池行为数值模型,与单道单层堆积成形实验结果相结合,比较性地分析了两种典型熔滴过渡模式下的熔滴冲击、聚并、铺展、凝固全过程。研究结果表明,当熔滴由低频大滴模式过渡至高频小滴模式时,熔滴与TIG电弧熔池的聚并行为由部分聚并转变为完全聚并,进而导致堆积层表面的“鱼鳞纹”结构特征明显减小。该研究对于进一步深入理解熔滴复合电弧增材制造机理、优化堆积工艺参数具有重要意义。
The interaction of the tilted TIG welding arc and the continuously controllable droplets is a complex phenomenon, which determines the surface morphology of deposited layers, the microstructure and internal defects of fabricated parts in droplet-arc hybrid additive manufacturing. To reveal the influence law of the droplet transfer mode on the dep-osition morphology, a three-dimensional numerical model based on computational fluid dynamics (CFD) was devel-oped to investigate the molten pool behaviors during droplet-arc hybrid additive manufacturing. Deposition experi-ments were conducted to verify and calibrate the numerical model. The process of drop impact, spreading, retraction and solidification is illustrated and analyzed using calculated results. It was found that when droplet transfer mode changes from low-frequency large droplet to high-frequency small droplet, the significant fish-scale ripples on the top surface of deposited layers occurred from the smaller droplets into the larger ones through partial coalescence. This work provides a perspective in understanding the physical phenomena involved in droplet-arc hybrid additive manu-facturing and lays the foundation for the optimization of process parameters.
[1]DEBROY T, WEI H L, ZUBACK J S, et al.Additive manufacturing of metallic components – Process, structure and properties[J].Progress in Materials Science, 2018, 92(March):112-224
[2]OLUWASEUN K, ADEBOWALE O.Employment 5.0: The work of the future and the future of work[J].Technology in Society, 2022, 71(November):102086-102086
[3]刘壮壮, 丁明路, 谢建新.金属打印数字化制造研究进展[J].金属学报, 2024, 60(5):569-584
[4]LIU Zhuangzhuang, DING Minglu, XIE Jianxin.Ad-vancements in Digital Manufacturing for Metal 3D Printing[J].Acta Metallurgica Sinica, 2024, 60(5):569-584
[5]张百成, 张文龙, 曲选辉.基于高通量制备的增材制造材料成分设计[J].金属学报, 2023, 59(1):75-86
[6]ZHANG Baicheng, ZHANG Wenlong, QU Xuanhui.Composition Design of Additive Manufacturing Mate-rials Based on High Throughput Preparation[J].Acta Metallurgica Sinica, 2023, 59(1):75-86
[7]周燕, 文世峰, 魏青松, 等.增材制造专用模具钢粉末材料设计、制备及其制造技术[J].中国材料进展, 2020, 39(5):356-363
[8]ZHOU Yan, WEN Shifeng, WIE Qingsong, et al.De-sign,Preparation and Manufacturing Technology of Special Mold Steel Powder Materials for Additive Manufacturing[J].Materials China, 2020, 39(5):356-363
[9]左寒松, 李贺军, 齐乐华, 等.铝合金微熔滴沉积成形过程中缺陷形成机理研究[J].稀有金属材料与工程, 2013, 42(8):1596-1600
[10]ZUO Hansong, LI Hejun, QI Lehua, et al.Formation Mechanism of Defects in Aluminum Alloy during Mi-cro-droplet Deposition[J].Rare Metal Materials and Engineering, 2013, 42(8):1596-1600
[11]LIU M L, YI H, CAO H J, et al.Heat accumulation effect in metal droplet-based 3D printing: Evolution mechanism and elimination Strategy[J].Additive Manufacturing, 2021, 48(December):102413-102413
[12]DOU Y B, LUO J, QI L H, et al.Quantitatively characterizing the evolution of hole defects between over-lapped aluminum droplets by a two-dimensional solidi-fication model[J].Additive Manufacturing, 2022, 60(Part A):103202-103202
[13]杜军, 吴云肖, 蒋敏博, 等.电弧辅助熔滴沉积增材制造增强铝基复合材料中的熔池动力学与颗粒迁移行为[J].机械工程学报, 2023, 59(03):318-327
[14]DU Jun, WU Yunxiao, JIANG Minbo, et al.Molten Pool Dynamics and Particle Migration Behavior during TIG-assisted Droplet Deposition Manufacturing of SiC Particle-reinforced Aluminum Matrix Composites[J].Journal of Mechanical Engineering, 2023, 59(03):318-327
[15]DU J, WANG Daqing, XU Siyuan.Gas tungsten arc welding assisted droplet deposition manufacturing of steel/lead bimetallic structures[J].Journal of Materials Processing Technology, 2021, 292(June):117069-117069
[16]廉艳平, 王潘丁, 高杰, 等.金属增材制造若干关键力学问题研究进展[J].力学进展, 2021, 51(03):648-701
[17]LIAN Y P, WANG P D, GAO J, et al.Fundamental mechanics problems in metal additive manufacturing: A state-of-art review[J].Advances in Mechanics, 2021, 51(3):648-701
[18]WU D, TASHIRO S, WU Z, et al.Analysis of heat transfer and material flow in hybrid KPAW-GMAW process based on the novel three dimensional CFD simulation[J].International Journal of Heat and Mass Transfer, 2020, 147(February):118921-118921
[19]KOU S, SUN D.Fluid flow and weld penetration in stationary arc welds[J].Metallurgical and Materials Transactions A, 1985, 16(2):203-213
[20] SREEDHAR U.Static GTAW: experimental and numer-ical investigations and heat ?ux parameter estima-tion[D]. PhD Thesis, Universit′e Montpellier-II, Mont-pellier, France, 2014
[21]CHO D W, NA S J, CHO M H, et al.A study on V-groove GMAW for various welding positions[J].Jour-nal of Materials Processing Technology, 2013, 213(9):1640-1652
[22]NASIRI M B, BEHZADINEJAD M, LATIFI H, et al.Investigation on the influence of various welding parameters on the arc thermal efficiency of the GTAW process by calorimetric method[J].Journal of Mechanical Science and Technology,, 2014, 28(August):3255-3261