发动机几何参数对超声速民机声爆特性影响研究

  • 贡天宇 ,
  • 单程军 ,
  • 易理哲 ,
  • 龙垚松 ,
  • 成忠涛
展开
  • 1. 华中科技大学
    2. 华中科技大学航空航天学院

收稿日期: 2024-12-03

  修回日期: 2025-04-07

  网络出版日期: 2025-04-10

基金资助

国家自然基金

Research on the Impact of Engine Geometric Parameters on Sonic Boom Characteristics of Supersonic Civil Aircraft

  • GONG Tian-Yu ,
  • DAN Cheng-Jun ,
  • YI Li-Zhe ,
  • LONG Yao-Song ,
  • CHENG Zhong-Tao
Expand

Received date: 2024-12-03

  Revised date: 2025-04-07

  Online published: 2025-04-10

Supported by

National Natural Science Foundation of China

摘要

为了降低发动机对声爆的影响,国内外新近低声爆超声速民机的气动布局以翼上发动机或尾吊发动机布局为主,然而翼上/尾吊发动机布局未充分利用超声速飞行器飞发一体化效应,对整机升阻比不利,现有文献中对发动机翼下布局声爆特性的研究不够充分。本文尝试采用一体化设计思想设计发动机翼下布局,以三维内转进气道作为超声速民机发动机的流量捕获装置,通过调整进气道外罩前缘曲线和外罩捕获面形状调控声爆,并通过“BoomProp”程序预测分析发动机几何参数及安装前后位置对超声速民机声爆特性影响,得到了可以通过优化外罩前缘曲线、发动机外罩捕获面形状参数以及改变发动机安装位置降低整机声爆的结论。

本文引用格式

贡天宇 , 单程军 , 易理哲 , 龙垚松 , 成忠涛 . 发动机几何参数对超声速民机声爆特性影响研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31592

Abstract

To mitigate the impact of engines on sonic booms, the aerodynamic layouts of recent low-boom supersonic civil aircraft, both domestically and internationally, primarily adopt either over-wing or tail-sitting engine layouts. However, these layouts exploit the integrated design effects of supersonic aircraft and engines insufficiently, adversely affecting the overall lift to drag ratio of the aircraft. Existing researches on the influence of engines on sonic booms are also inadequate. This paper at-tempts to adopt an integrated design concept to devise an under-wing engine layout, utilizing a three-dimensional inward turning inlet as the flow capture device for the integrated design of supersonic civil aircraft and engines, and controlling the sonic boom by adjusting the leading-edge curve and the shape parameters of cowl. The “BoomProp” program is utilized to predict and analyze the impact of engine geometric parameters and the installation positions of engine on the sonic boom characteristics of supersonic civil aircraft. While the conclusion has been reached that the sound boom of the overall model could be reduced by optimizing the leading-edge curve, the shape parameters of the cowl, and changing the installation position of the engine.

参考文献

[1]韩忠华,乔建领,丁玉临,等.新一代环保型超声速客机气动相关关键技术与研究进展[J].空气动力学学报, 2019, 37(04):620-635 [2]钱战森,冷岩,高亮杰,等.超声速飞行器声爆预测技术研究现状与发展建议[J].气动研究与试验, 2023, 1(04):64-74 [3]HAN Z, QIAO J, ZHANG L, et al.Recent progress of efficient low-boom design and optimization methods[J].Progress in Aer-ospace Sciences, 2024, 146(32):- [4]BONAVOLONTà G, LAWSON C, RIAZ A.Review of Sonic Boom Prediction and Re-duction Methods for Next Generation of Supersonic Aircraft[J].Aerospace, 2023, 10(11):917- [5]王占学,郝旺,张晓博,等.用于超声速民机的变循环发动机研究进展[J].航空发动机, 2021, 47(02):7-16 [6]徐悦,韩忠华,尤延铖,等.新一代绿色超声速民机的发展现状与挑战[J].科学通报, 2020, 65(Z1):127-133 [7]SUN Y, SMITH H.Review and prospect of supersonic business jet design[J].Progress in Aerospace Sciences, 2017, 90:12-38 [8]丁玉临,韩忠华,乔建领,等.超声速民机总体气动布局设计关键技术研究进展[J].航空学报, 2023, 44(02):20-46 [9]张力文,宋文萍,韩忠华,等.声爆产生、传播和抑制机理研究进展[J].航空学报, 2022, 43(12):77-100 [10]L W ZHANG, W P SONG, Z H HAN, et al.Recent progress of sonic boom generation,propagation,and mitigation mechanism[J].Acta Aeronautica et Astronautica Sinica, 2022, 43(12):77-100 [11]GONG T, LONG Y, CHENG Z, et al.Recent development of integrated design and improving methods of waverider and inlet[J].Advances in Aerodynamics, 2024, 6(1):25- [12]马创,舒博文,黄江涛,等.面向声爆气动力的飞行器布局设计知识挖掘[J].北京航空航天大学学报, 2024, 50(03):975-984 [13]肖天航,徐雅楠,朱震浩,等.超声速民机发动机短舱布局对声爆的影响[J].北京航空航天大学学报, 2023, 49(09):2267-2278 [14]朱自强,兰世隆.超声速民机和降低音爆研究[J].航空学报, 2015, 36(08):2507-2528 [15]DING Y, HAN Z, QIAO J, et al.In-verse Design Method for Low-Boom Su-personic Transport with Lift Constraint[J].Aiaa Journal, 2023, 61(7):2840-2853 [16]陈晴,韩忠华,杨瀚,等.机翼上反角对超声速民机全声爆毯声爆特性影响研究[J].气动研究与试验, 2024, 2(01):50-58 [17]单程军,贡天宇,易理哲,等.超声速民机高效高可信度声爆/气动多学科优化方法[J].航空学报, 2024, 45(24):- [18]YAMAZAKI W, KUSUNOSE K.Aerody-namicSonic Boom Performance Evalua-tion of Innovative Supersonic Transport Configurations[J].Journal of Aircraft, 2016, 53(4):942-950 [19]BAN N, YAMAZAKI W, KUSUNOSE K.Low-BoomLow-Drag Design Optimiza-tion of Innovative Supersonic Transport Configuration[J].Journal of Aircraft, 2018, 55(3):1071-1081 [20]FENG X Q, LI Z K, SONG B F.Research of low boom and low drag supersonic aircraft design[J].Chinese Journal of Aeronautics, 2014, 27(3):531-541 [21]HEATH C M, SLATER J W, RALLABHANDI S K.Inlet Trade Study for a Low-Boom Aircraft Demonstrator[J].Journal of Aircraft, 2017, 54(4):1283-1293 [22]YE L, YE Z, YE K, et al.A low-boom and low-drag design method for supersonic aircraft and its applications on airfoils[J].Advances in Aerodynamics, 2021, 3(1):27- [23]FOMIN V M, CHIRKASHENKO V F, VOLKOV V F, et al.Reduction of the son-ic boom level in supersonic aircraft flight by the method of surface cooling[J].Thermophysics and Aeromechanics, 2013, 20(6):669-678 [24]李军府,陈晴,王伟,等.一种先进超声速民机低声爆高效气动布局设计[J].航空学报, 2024, 45(06):121-139 [25]王宇航,徐悦.史蒂文斯响度在超声速民机低声爆设计中的应用[J].空气动力学学报, 2019, 37(04):683-689 [26]KOTHARI A, TARPLEY C, MCLAUGHLIN T, et al.Hypersonic vehi-cle design using inward turning flow fields[C]. 2006. [27]田亚洲.低音爆进气道设计方法及流动特性研究[D]. 南京航空航天大学, 2021:37-58 [28]田亚洲,袁化成,张玲玲,等.流线追踪内转式低音爆进气道的设计方法及流动特征[J].推进技术, 2021, 42(08):1798-1806 [29]饶彩燕.二元低音爆超声速进气道的流动特性与流动控制研究[D]. 南京航空航天大学, 2017:17-24. [30]饶彩燕,谭慧俊,张悦.二元低音爆超声速进气道的流动特性研究[J].推进技术, 2017, 38(05):975-982 [31]CONNERS T, HOWE D.Supersonic Inlet Shaping for Dramatic Reductions in Drag and Sonic Boom Strength[J].44Th AIAA Aerospace Sciences Meeting and Exhibit, 2006, :- [32]贡天宇,胡宋健,李怡庆.多面体与切割体网格对高超声速空天飞机气动力计算精度的影响研究[J].南昌航空大学学报自然科学版, 2023, 37(02):10-18 [33]COYNE T, LOTH E, KONCSEK J, et al.Simulations of a low-boom,axisymmetric,external compression inlet[J].Aeronautical Journal, 2013, 117(1193):709-726
文章导航

/