[1]HAMEL P G, JATEGAONKAR, R V.Evolution of flight vehicle system identification[J].Journal of air-craft, 1996, 33(1):9-28
[2] JATEGAONKAR R V.Flight vehicle system identifica-tion: a time domain methodology[M]. Second Edition. Reston, Virginia: American Institute of Aeronautics and As-tronautics, 2015: 97-298.
[3]SIMMONS B M, MCCLELAND H G, WOOLSEY C A.Nonlinear model identification methodology for small,fixed-wing,unmanned aircraft[J].Journal of air-craft, 2019, 55(3):1056-1067
[4]HUI Z, CHEN G.Aerodynamic Parameter Estimation for a Morphing Unmanned Aerial Vehicle from Flight Tests[J]. Journal of Aerospace Information Systems, 2023: 20(9): 588-595.[J].Journal of Aerospace Information Systems, 2023, 20(9):588-595
[5]SEO G, KIM Y, SADERL S.Kalman-filter based online system identification of fixed-wing aircraft in upset condition[J]. Aerospace Science and Technology, 2019, 89:307-317.[J].Aerospace Science and Technology, 2019, 89(\):307-317
[6] PEYADA N K, SEN A, GHOSH A K.Aerodynamic characterization of HANSA-3 aircraft using equation error, maximum likelihood and filter error methods[C]// Proceed-ings of the International MultiConference of Engineers and Computer Scientists. Hong Kong: Newswood Limited, 2008: 1-6.
[7]TAI S, WANG L, WANG Y, BU C, YUE T.Flight Dy-namics Modeling and Aerodynamic Parameter Identifi-cation of Four-Degree-of-Freedom Virtual Flight Test[J].AIAA Journal, 2023, 61(6):2652-2665
[8]CHOWDHARY G, JATEGAONKAR R.Aerodynamic parameter estimation from flight data applying extend-ed and unscented Kalman filter[J].Aerospace science and technolo-gy, 2010, 14(2):106-117
[9] PADAYACHEE K.Aerodynamic parameter identifica-tion for an unmanned aerial vehicle[D]. Witwatersrand: Uni-versity of the Witwatersrand, 2016.
[10]SADERLA S, KIM Y, GHOSH A.Online system identification of mini cropped delta UAVs using flight test methods[J]. Aerospace Science and Technology, 2018, 80: 337-353.[J].Aerospace Science and Technology, 2018, 80(\):337-353
[11] HESS R.On the use of back propagation with feed-forward neural networks forthe aerodynamic estimation prob-lem[M]. Reston: AIAA, 1993: 3638.
[12]LINSE D J, SRENGEL R F.Identification of aerody-namic coefficients using computational neural net-works[J].Journal of Guidance, Control, and Dynamics, 1993, 16(6):1018-1025
[13]GHOSH A.RAISINGHANI S,KHUBCHANDANI SEstimation of aircraft lateral-directional parameters us-ing neural networks[J].Journal of Aircraft, 1998, 35(6):876-881
[14]RAISINGHANI S, GHOSH A, KALRA P.Two new techniques for aircraft parameter estimation using neu-ral networks[J].The Aeronautical Journal, 1998, 102(1011):25-30
[15] SINGH S, GHOSH A.Parameter estimation from flight data of a missile using maximum likelihood and neural network method[C]// AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, Keystone, Colorado, 2006: 6284.
[16]DAS S, KUTTIER R, SINHA M, JATEGAONKAR R.Neural partial differential method for extracting aero-dynamic derivatives from flight data[J].Journal of Guidance, Control, and Dynamics, 2010, 33(2):376-384
[17]PEYAD N K, GHOS A K.Aircraft parameter estima-tion using a new filtering technique based upon a neu-ral network and Gauss-Newton method[J].The Aero-nautical Journal, 2009, 113(1142):243-252
[18] PEYADA N, GHOSH A.Aircraft parameter estimation using neural network based algorithm[C]// AIAA at-mospheric flight mechanics conference. Reston: AIAA, Chi-cago, Illinois, 2009: 5941.
[19] KUMAR R., GHOSH A. Nonlinear aerodynamic modeling from flight data at high angles of attack using Neu-ral-Gauss-Newton method[C] AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, Dallas, TX, 2015: 2707.
[20]SADERLA S, DHAYALAN R, GHOSH A.Parameter Estimation from Near Stall Flight Data using Conven-tional and Neural-based Methods[J]. Defence Science Journal, 2017, 67(1).[J].Defence Science Journal, 2017, 67(1):-
[21]SADERLA S, DHAYALAN R, SINGH K, KUMAR N, GHOSH A.Longitudinal and lateral aerodynamic char-acterisation of reflex wing Unmanned Aerial Vehicle from flight tests using Maximum Likelihood,Least Square and Neural Gauss Newton methods[J].The Aeronautical Journal, 2019, 123(1269):1807-1839
[22]WANG Z, LI A, WANG L, ZHOU X, WU B.Aerody-namic coefficients modeling using Levenberg–Marquardt algorithm and network[J].Aircraft Engi-neering and Aero-space Technology, 2022, 94(3):336-350
[23]VERMA H O, PEYADA N.Parameter estimation of unstable aircraft using extreme learning ma-chine[J].De-fence Science Journal, 2017, 67(6):603-
[24] VERMA H O, PEYADA N.Parameter estimation of stable and unstable aircraft using extreme learning ma-chine[C]// 2018 AIAA Atmospheric Flight Mechanics Con-ference. Reston: AIAA, Kissimmee, Florida, 2018, :0526.
[25]VERMA H, PEYADA N.Estimation of aerodynamic parameters near stall using maximum likelihood and extreme learning machine-based methods[J].The Aero-nautical Jour-nal, 2021, 123(1285):489-509
[26]VERMA H, PEYADA N.Estimation of longitudinal aerodynamic parameters using recurrent neural net-work[J].The Aeronautical Journal, 2023, 127(1308):255-267
[27]HUI Z, KONG Y N, YAO W G, CHEN G.Aircraft parameter estimation using a stacked long short-term memory network and Levenberg-Marquardt method[J].Chi-nese Journal of Aeronautics, 2024, 37(2):123-136
[28]HUANG G B, ZHU Q Y, SIEW C K.Extreme learn-ing machine: theory and applications[J].Neurocompu-ting, 2006, 70(1-3):489-501
[29]HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural computation, 1997, 7(8):1735-1780
[30] CHO K, VAN M B, GULCEHRE C, BAHDANAU D, BOUGARES F, SCHWENK H, BENGIO Y.Learning phrase representations using RNN encoder-decoder for statistical machine translation[DB/OL]. arXiv preprint: 1406.1078, 2014.
[31] DEYey R, SALEM F M.Gate-variants of gated recur-rent unit (GRU) neural networks[C]// 2017 IEEE 60th inter-national midwest symposium on circuits and sys-tems (MWSCAS). IEEE, 2017: 1597-1600.
[32]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, SUTSKEVER I, SALAKHUTDINOV R.Dropout: a simple way to prevent neural networks from overfit-ting[J].The journal of machine learning research, 2014, 15(1):1929-1958
[33]HUI Z, ZHANG Y, CHEN G.Aerodynamic perfor-mance investigation on a morphing unmanned aerial vehicle with bio-inspired discrete wing structures[J]. Aerospace Sci-ence and Technology, 2019, 95: 105419.[J].Aerospace Science and Technology, 2019, 95(\):105419-105419
[34]XU D, HUI Z, LIU Y, CHEN G.Morphing control of a new bionic morphing UAV with deep reinforcement learn-ing[J]. Aerospace science and technology, 2019, 92: 232-243.[J].Aerospace science and technology, 2019, 92(\):232-243
[35] GLOROT X, BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[C]// Pro-ceedings of the thirteenth international conference on artifi-cial intelligence and statistics. JMLR Workshop and Confer-ence Proceedings, 2010: 249-256.