流体力学与飞行力学

空气动力驱动变体飞展翼飞机

  • 陈海昕 ,
  • 冯良韬 ,
  • 段玉宇 ,
  • 郭钰坤 ,
  • 付越 ,
  • 潘晨亮 ,
  • 周奕杉
展开
  • 清华大学 航天航空学院,北京 100084

收稿日期: 2025-02-27

  修回日期: 2025-03-02

  录用日期: 2025-03-05

  网络出版日期: 2025-03-15

基金资助

国家自然科学基金(92052203)

Aerodynamics-driven monoplane-biplane morphing aircraft

  • Haixin CHEN ,
  • Liangtao FENG ,
  • Yuyu DUAN ,
  • Yukun GUO ,
  • Yue FU ,
  • Chenliang PAN ,
  • Yishan ZHOU
Expand
  • School of Aerospace Engineering,Tsinghua University,Beijing 100084,China

Received date: 2025-02-27

  Revised date: 2025-03-02

  Accepted date: 2025-03-05

  Online published: 2025-03-15

Supported by

National Natural Science Foundation of China(92052203)

摘要

采用大展弦比机翼是提高飞行器升阻比的关键。然而,大展弦比机翼使飞行器的起降受到多方面的影响、限制,如跑道宽度、结构安全、气流影响等。介绍了一种原创的飞机变体形式,其以单翼巡航,双翼起降,在飞行中对2种模式进行双向切换;其变体不依赖于主动驱动机构,而是依靠对空气动力的调控来驱动和控制。这种变体形式可以大幅度改变翼展,兼顾了起降与巡航对飞行器翼展的不同需求,也使为实现变体付出的结构重量、空间、复杂度等代价降到了最低;但作为一种全新的变体方式,其也带来了气动设计、动力学与控制、结构可靠性、试验验证等多方面挑战。

本文引用格式

陈海昕 , 冯良韬 , 段玉宇 , 郭钰坤 , 付越 , 潘晨亮 , 周奕杉 . 空气动力驱动变体飞展翼飞机[J]. 航空学报, 2025 , 46(5) : 531905 -531905 . DOI: 10.7527/S1000-6893.2025.31905

Abstract

A high-aspect-ratio wing is the key to improving the lift-to-drag ratio of an aircraft. However, a high-aspect-ratio wing leads to a large wingspan, which affects the take-off and landing of the aircraft in many aspects, such as runway width, structure safety and crosswind effects. This paper introduces a monoplane-biplane morphing aircraft, which cruises as a monoplane and takes off and lands as a biplane, switching between the two modes during flight. In addition, its morphing does not rely on any active drive mechanism, but relies on ailerons to change lift to drive morphing. This design can change wingspan to a large extent, take into account the different wingspan requirements of take-off, landing and cruising, and save the structure weight, space and complexity of the morphing drive mechanism, thereby improving maintainability. However, as a new morphing mode, this design also brings challenges in many aspects, such as aerodynamic design, multi-body dynamics and control, structural reliability, and experimental verification.

参考文献

1 向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报202052(6): 57-77.
  XIANG J W, KAN Z, SHAO H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle?[J]. Journal of Harbin Institute of Technology202052(6): 57-77 (in Chinese).
2 SMITH M H, RENZELMANN M E, MARX A D. Folding wing-tip system: US5381986A[P]. 1995-01-17.
3 PEDLOW G W, WELZENBACH D E. The CIA and the U-2 Program 1954-1974[M]. Collingdale: DIANE Publishing Co, 1998.
4 NOLL T E, ISHMAEL S D, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the helios prototype vehicle mishap[R]. Hampton: NASA Langley Research Center, 2007.
5 WENG C T, HO C S, LAN C E, et al. Aerodynamic analysis of a jet transport in windshear encounter during landing[J]. Journal of Aircraft200643(2): 419-427.
6 陈树生, 贾苜梁, 刘衍旭, 等. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报202445(6): 629595.
  CHEN S S, JIA M L, LIU Y X, et al. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review?[J]. Acta Aeronautica et Astronautica Sinica202445(6): 629595 (in Chinese).
7 HALLION R P, PEEBLES C. Probing the Sky: Selected NACA research airplanes and their contributions to flight?[M]. Washington, D. C.: National Aeronautics and Space Administration, 2014.
8 TRANKLE T L, BACHNER S D. Identification of a nonlinear aerodynamic model of the F-14 aircraft?[J]. Journal of Guidance, Control, and Dynamics199518(6): 1292-1297.
9 BLONDEAU J, PINES D. Wind tunnel testing of a morphing aspect ratio wing using an pneumatic telescoping spar?[C]?∥2nd AIAA “Unmanned Unlimited” Conferences and Workshop & Exhibit. Reston: AIAA, 2003.
10 BLONDEAU J, RICHESON J, PINES D. Design of a morphing aspect ratio wing using an inflatable telescoping spar?[C]∥44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003.
11 BAE J S, SEIGLER T M, INMAN D J. Aerodynamic and static aeroelastic characteristics of a variable-span morphing wing?[J]. Journal of Aircraft200542(2): 528-534.
12 SANTOS P, SOUSA J, GAMBOA P. Variable-span wing development for improved flight performance?[J]. Journal of Intelligent Material Systems and Structures201728(8): 961-978.
13 SHAVROV V B. History of Aircraft Construction in the USSR (Vol 2)[M]. Moscow: Mashinostroenie, 1985.
14 KUDVA J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures200415(4): 261-267.
15 TAKAHASHI T, SPALL R, TURNER D, et al. A multi-disciplinary assessment of morphing aircraft technology applied to tactical cruise missile configuations?[C]?∥45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004.
16 LOVE M, ZINK P, STROUD R, et al. Demonstration of morphing technology through ground and wind tunnel tests?[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
17 FLANAGAN J, STRUTZENBERG R, MYERS R, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1?[C]?∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
18 BAE J S, SEIGLER T M, INMAN D, et al. Aerodynamic and aeroelastic considerations of a variable-span morphing wing?[C]?∥45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004.
19 BYE D, MCCLURE P. Design of a morphing vehicle[C]?∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
20 IVANCO T, SCOTT R, LOVE M, et al. Validation of the lockheed martin morphing concept with wind tunnel testing?[C]?∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
21 SUN J, GUAN Q H, LIU Y J, et al. Morphing aircraft based on smart materials and structures: A state-of-the-art review?[J]. Journal of Intelligent Material Systems and Structures201627(17): 2289-2312.
22 PECORA R, AMOROSO F, LECCE L. Effectiveness of wing twist morphing in roll control[J]. Journal of Aircraft201249(6): 1666-1674.
23 BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures201122(9): 823-877.
24 PERRY B, COLE S R, MILLER G D. Summary of an active flexible wing program?[J]. Journal of Aircraft199532(1): 10-15.
25 CLARKE R, ALLEN M, DIBLEY R, et al. Flight test of the F/A-18 active aeroelastic wing airplane?[C]?∥AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2005.
26 CUMMING S B, SMITH M S, ALI A, et al. Aerodynamic flight test results for the adaptive compliant trailing edge?[C]∥AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016.
27 WLEZIEN R, HORNER G, MCGOWAN A, et al. The aircraft morphing program?[C]∥39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 1998.
28 SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape morphing of aircraft wing: Status and challenges[J]. Materials & Design201031(3): 1284-1292.
29 HARVEY C, GAMBLE L L, BOLANDER C R, et al. A review of avian-inspired morphing for UAV flight control?[J]. Progress in Aerospace Sciences2022132: 100825.
30 MA N, ZHOU X D, HE G P, et al. Design and analysis of a bat-like active morphing wing mechanism?[C]?∥ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2016: DET C2016-59111.
31 WANG I, DOWELL E H. Structural dynamics model of multisegmented folding wings: Theory and experiment[J]. Journal of Aircraft201148(6): 2149-2160.
32 DI LUCA M, MINTCHEV S, HEITZ G, et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones?[J]. Interface Focus20177(1): 20160092.
33 CARLSON S J, ARORA P, PAPACHRISTOS C. A multi-VTOL modular aspect ratio reconfigurable aerial robot?[C]?∥2022 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2022: 8-15.
34 MENG Y, AN C, XIE C C, et al. Conceptual design and flight test of two wingtip-docked multi-body aircraft[J]. Chinese Journal of Aeronautics202235(12): 144-155.
35 WEISSHAAR T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Aircraft201350(2): 337-353.
36 ZHOU X P, CHEN H X. Conceptual design of self-expanding/ folding extremely large aspect ratio wing airplane?[C]?∥EUCASS 2017. Milan: EUCASS, 2017, doi: 10.13009/EUCASS2017-209 .
37 陈海昕, 周肖鹏. 基于自展开折叠翼技术的超大展弦比飞机: CN206644995U[P]. 2017-11-17.
  CHEN H X, ZHOU X P. Ultra-high aspect ratio aircraft based on self-deployable folding wing technology: CN206644995U[P]. 2017-11-17.
38 GUO T Y, FENG L T, ZHU C H, et al. Conceptual research on a mono-biplane aerodynamics-driven morphing aircraft[J]. Aerospace20229(7): 380.
39 郭廷宇. 单-双折叠翼变体飞行器总体设计研究[D]. 北京: 清华大学, 2023.
  GUO T Y. Research on the overall design of the monoplane-biplane morphing aircraft[D]. Beijing: Tsinghua University, 2023 (in Chinese).
40 FENG L T, GUO T Y, ZHU C H, et al. Control design and flight test of aerodynamics-driven monoplane-biplane morphing aircraft[J]. Journal of Guidance, Control, and Dynamics202346(12): 2373-2387.
41 GUO T Y, ZHU C H, FENG L T, et al. Aerodynamic-driven morphing aircraft and its aerodynamic design[J]. Chinese Journal of Aeronautics2024, doi: 10.1016/j.cja.2024.103377 .
42 CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics202235(5): 220-246.
43 SHI R Q, SONG J M. Dynamics and control for an in-plane morphing wing[J]. Aircraft Engineering and Aerospace Technology201385(1): 24-31.
44 STROE I, CRAIFALEANU A. Generalization of the Lagrange equations formalism, for motions with respect to non-inertial reference frames?[J]. Applied Mechanics and Materials2014656: 171-180.
45 MEIROVITCH L, STEMPLE T. Hybrid equations of motion for flexible multibody systems using quasicoordinates?[J]. Journal of Guidance, Control, and Dynamics199518(4): 678-688.
46 万航, 徐胜利, 张庆振, 等. 基于动态逆的空天变体飞行器姿态控制[J]. 空天防御20192(4): 25-31.
  WAN H, XU S L, ZHANG Q Z, et al. Dynamic inversion-based attitude control of aerospace morphing vehicle[J]. Air & Space Defense20192(4): 25-31 (in Chinese).
47 AN J G, YAN M, ZHOU W B, et al. Aircraft dynamic response to variable wing sweep geometry?[J]. Journal of Aircraft198825(3): 216-221.
48 FENG L T, GUO T Y, ZHU C H, et al. Control of aerodynamic-driven morphing?[J]. Journal of Guidance, Control, and Dynamics202246(1): 198-205.
49 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报202243(10): 527449.
  RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527449 (in Chinese).
50 姚烯. 变形翼飞行器的新型控制算法研究[D]. 南京: 南京航空航天大学, 2014.
  YAO X. Research on new control algorithm of morphing wing aircraft?[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
51 YAN B B, LI Y, DAI P, et al. Aerodynamic analysis, dynamic modeling, and control of a morphing aircraft[J]. Journal of Aerospace Engineering201932(5): 04019058.
52 颜凯. 变体飞机的动力学建模仿真及控制律设计[D]. 南京: 南京航空航天大学, 2013.
  YAN K. Dynamic modeling simulation and control law design of variant aircraft?[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese).
53 SHAO P Y, WU J, WU C F, et al. Model and robust gain-scheduled PID control of a bio-inspired morphing UAV based on LPV method[J]. Asian Journal of Control201921(4): 1681-1705.
54 GUO T Y, ZHU C H, FENG L T, et al. Aerodynamic-driven morphing aircraft and its overall design[J]. Chinese Journal of Aeronautics2024, DOI: 10.1016/j.cja.2024.11.032 .
55 LIU W, HUANG C D, YANG G W. Time efficient aeroelastic simulations based on radial basis functions[J]. Journal of Computational Physics2017330: 810-827.
56 HUANG C D, HUANG J, SONG X, et al. Aeroelastic simulation using CFD/CSD coupling based on precise integration method[J]. International Journal of Aeronautical and Space Sciences202021(3): 750-767.
文章导航

/