等离子体燃烧调控研究进展与展望
收稿日期: 2025-02-17
修回日期: 2025-02-20
录用日期: 2025-02-21
网络出版日期: 2025-03-15
基金资助
国家自然科学基金(52488101)
Research progress and outlook of plasma combustion control
Received date: 2025-02-17
Revised date: 2025-02-20
Accepted date: 2025-02-21
Online published: 2025-03-15
Supported by
National Natural Science Foundation of China(52488101)
等离子体与燃烧室结合的研究已经有100多年历史,火花放电等离子体点火技术已经十分成熟,面向先进发动机的等离子体燃烧调控研究正处于蓬勃发展的阶段。等离子体燃烧调控技术在拓展发动机点火边界与熄火边界、提升燃烧效率、抑制燃烧不稳定等方面具有重要作用;等离子体燃烧调控机理作为等离子体动力学与燃烧学的交叉前沿,具有丰富的科学内涵。从技术创新与机理探索两个层面,对等离子体燃烧调控的国内外研究进展进行了综述。技术创新层面,总结了火花、电弧、滑动弧、等离子体炬、激光、纳秒等多种等离子体燃烧调控方法的研究进展,从激励系统研发思路、燃烧调控效果等方面进行了分析;机理探索方面,梳理了加热效应、化学效应、输运效应等3类主要基本原理,归纳了典型燃料的等离子体激励反应机理,以及零维、多维、唯象3种等离子体燃烧建模仿真模型的进展。最后,对等离子体燃烧调控的未来发展进行了展望,等离子体燃烧调控技术创新与机理探索将进一步融合发展,紧跟高温升燃烧室、宽域加力燃烧室、宽域超燃燃烧室等先进燃烧室发展需求,推动新型等离子体燃烧调控技术创新与应用;等离子体燃烧调控机理探索将进一步系统深入,向等离子体激励燃烧学新兴交叉学科发展;低碳、零碳燃料等离子体燃烧调控与等离子体辅助能源转化也是新兴的研究热点。
吴云 , 张志波 , 朱益飞 , 贾敏 , 李应红 . 等离子体燃烧调控研究进展与展望[J]. 航空学报, 2025 , 46(5) : 531879 -531879 . DOI: 10.7527/S1000-6893.2025.31879
The research on the application of plasmas in combustion chambers has been conducted over a century. Spark discharge plasma ignition technology is very mature, while the study of plasma combustion control for advanced engines is currently flourishing. Plasma combustion control technology plays a significant role in broadening the ignition and extinction boundaries of engines, enhancing combustion efficiency, and suppressing combustion instability. The mechanism of plasma combustion control, as an interdisciplinary frontier of plasma dynamics and combustion science, is rich in scientific connotations. This article reviews the research progress on plasma combustion control from two aspects: technology innovation and mechanism exploration. With respect to technology innovation, based on the development ideas of plasma actuation systems and the control effect, the research progress of various plasma combustion control methods is summarized, such as spark, arc, gliding arc, plasma torch, laser plasma, and nanosecond discharge techniques. With respect to mechanism exploration, the three main fundamental principles of thermal effects, chemical effects, and transport effects are analyzed, and the progress of plasma actuation reaction mechanisms for typical fuels, as well as the development of zero-dimensional, multi-dimensional, and phenomenological plasma combustion modelling and simulation models, are summarized. Finally, the outlook of future development of plasma combustion control is discussed. The innovation and exploration of plasma combustion control technology will further integrate and develop to satisfy the needs of advanced combustion chambers such as high-temperature-rise combustion chambers, wide-range afterburning combustion chambers, and wide-range supersonic combustion chambers, promoting the innovation and application of new types of plasma combustion control technologies. The plasma combustion control mechanism needs to be explored systematically and in depth, developing towards the emerging interdisciplinary field of plasma-excited combustion science. Additionally, the plasma combustion control of low-carbon and zero-carbon fuels, as well as plasma-assisted energy conversion, is becoming research hotspots.
1 | LI M Z, WANG Z K, XU R G, et al. Advances in plasma-assisted ignition and combustion for combustors of aerospace engines[J]. Aerospace Science and Technology, 2021, 117: 106952. |
2 | CAI Z, WANG T Y, SUN M B. Review of cavity ignition in supersonic flows[J]. Acta Astronautica, 2019, 165: 268-286. |
3 | 于锦禄, 黄丹青, 王思博, 等. 等离子体点火与助燃技术在航空发动机上的应用[J]. 航空发动机, 2018, 44(3): 12-20. |
YU J L, HUANG D Q, WANG S B, et al. Application of plasma ignition and assisted combustion of aeroengine[J]. Aeroengine, 2018, 44(3): 12-20 (in Chinese). | |
4 | 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学, 2020, 50(10): 1252-1273. |
LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica), 2020, 50(10): 1252-1273 (in Chinese). | |
5 | 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术, 2014, 40(7): 2024-2038. |
WU Y, LI Y H. Progress in research of plasma-assisted flow control, ignition and combustion?[J]. High Voltage Engineering, 2014, 40(7): 2024-2038 (in Chinese). | |
6 | LEMPERT W R. An overview or the AFOSR plasma assisted combustion MURI program?[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
7 | STARIKOVSKIY A, ALEKSANDROV N. Plasma-assisted ignition and combustion?[J]. Progress in Energy and Combustion Science, 2013, 39(1): 61-110. |
8 | JU Y G, SUN W T. Plasma assisted combustion: Dynamics and chemistry?[J]. Progress in Energy and Combustion Science, 2015, 48: 21-83. |
9 | JU Y G, LEFKOWITZ J K, REUTER C B, et al. Plasma assisted low temperature combustion?[J]. Plasma Chemistry and Plasma Processing, 2016, 36(1): 85-105. |
10 | 李奕新, 谭航, 杨水银. 航空发动机电点火系统现状与发展趋势[J]. 燃气涡轮试验与研究, 2015, 28(6): 49-54. |
LI Y X, TAN H, YANG S Y. An initial study on the current development and derivatives of the electric ignition system of aero-engine?[J]. Gas Turbine Experiment and Research, 2015, 28(6): 49-54 (in Chinese). | |
11 | BALLAL D R, LEFEBVRE A H. Ignition and flame quenching of quiescent fuel mists?[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1978, 364(1717): 277-294. |
12 | BALLAL D R, LEFEBVRE A H. The influence of spark discharge characteristics on minimum ignition energy in flowing gases[J]. Combustion and Flame, 1975, 24: 99-108. |
13 | KELLEY A P, JOMAAS G, LAW C K. Critical radius for sustained propagation of spark-ignited spherical flames[J]. Combustion and Flame, 2009, 156(5): 1006-1013. |
14 | CHEN Z, BURKE M P, JU Y G. On the critical flame radius and minimum ignition energy for spherical flame initiation?[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1219-1226. |
15 | ZHANG Z B, WU Y, SUN Z Z, et al. Experimental research on multichannel discharge circuit and multi-electrode plasma synthetic jet actuator?[J]. Journal of Physics D: Applied Physics, 2017, 50(16): 165205. |
16 | ZHANG Z B, WU Y, JIA M, et al. The multichannel discharge plasma synthetic jet actuator?[J]. Sensors and Actuators A: Physical, 2017, 253: 112-117. |
17 | ZHANG Z B, WU Y, JIA M, et al. Modeling and optimization of the multichannel spark discharge?[J]. Chinese Physics B, 2017, 26(6): 065204. |
18 | LIN B X, WU Y, ZHANG Z B, et al. Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures[J]. Combustion and Flame, 2017, 182: 102-113. |
19 | LIN B X, WU Y, ZHANG Z B, et al. Ignition enhancement of lean propane/air mixture by multi-channel discharge plasma under low pressure?[J]. Applied Thermal Engineering, 2019, 148: 1171-1182. |
20 | HUANG S F, SONG H M, WU Y, et al. Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter?[J]. Chinese Physics B, 2018, 27(3): 035203. |
21 | LIN B X, WU Y, XU M X, et al. Experimental investigation on high-altitude ignition and ignition enhancement by multi-channel plasma igniter?[J]. Plasma Chemistry and Plasma Processing, 2021, 41(5): 1435-1454. |
22 | HUANG S F, WU Y, SONG H M, et al. Experimental investigation of multichannel plasma igniter in a supersonic model combustor?[J]. Experimental Thermal and Fluid Science, 2018, 99: 315-323. |
23 | CAI B H, SONG H M, WU Y, et al. Experimental investigation on swirling spray forced ignition of embedded multi-channel plasma igniter?[J]. Acta Astronautica, 2021, 179: 670-679. |
24 | CAI B H, SONG H M, ZHANG Z B, et al. Experimental investigation of C-shape embedded multi-channel plasma igniter in a single-head swirl combustor[J]. Journal of Physics D Applied Physics, 2021, 54(13): 135201. |
25 | MIAO H F, ZHANG Z B, JIA M, et al. Ignition enhancement of lean kerosene air mixture by multichannel jet enhanced plasma igniter?[J]. Aerospace Science and Technology, 2021, 117: 106954. |
26 | ZHAO H, ZHAO N B, ZHANG T H, et al. Studies of multi-channel spark ignition of lean n-pentane/air mixtures in a spherical chamber[J]. Combustion and Flame, 2020, 212: 337-344. |
27 | HAN X Y, YU S, TONG J, et al. Study of an innovative three-pole igniter to improve efficiency and stability of gasoline combustion under charge dilution conditions[J]. Applied Energy, 2020, 257: 113999. |
28 | YU S, XIE K, YU X, et al. High energy ignition strategies for diluted mixtures via a three-pole igniter?[C]?∥SAE Technical Paper Series, 2016. |
29 | NAKAMURA T, TAKAHASHI E, NISHIOKA M, et al. Long gap spark discharge ignition using a boron-doped diamond electrode?[J]. Journal of Physics D: Applied Physics, 2021, 54(40): 405204. |
30 | ZHU Z F, LI B, GAO Q, et al. Long-gap ignition using femtosecond laser filament-triggered discharge?[J]. Optics & Laser Technology, 2022, 156: 108611. |
31 | 中国人民解放军总装备部. 航空涡轮发动机电点火系统通用规范 [S]. 北京: 中国人民解放军总装备部, 2007. |
Chinese People’?s Liberation Army General Armament Department. General specification for electromechanical ignition systems of Aviation turbine engines [S]. Beijing: Chinese People’?s Liberation Army General Armament Department, 2007 (in Chinese). | |
32 | 孙旭, 苏建仓, 张喜波, 等. 气体火花开关电阻特性[J]. 强激光与粒子束, 2012, 24(4): 843-846. |
SUN X, SU J C, ZHANG X B, et al. Resistance properties of gas spark switch?[J]. High Power Laser and Particle Beams, 2012, 24(4): 843-846 (in Chinese). | |
33 | MIAO H F, ZHANG Z B, WU Y, et al. A self-trigger three-electrode plasma synthetic jet actuator?[J]. Sensors and Actuators A: Physical, 2021, 332: 113174. |
34 | MIAO H F, ZHANG Z B, HE Y Y, et al. Ignition enhancement of liquid kerosene by a novel high-energy spark igniter in scramjet combustor at Mach 4 flight condition?[J]. Aerospace Science and Technology, 2023, 139: 108397. |
35 | MIAO H F, ZHANG Z B, ZHENG X, et al. Investigation on ignition enhancement characteristics by high-energy spark in a scramjet combustor under low flight Mach conditions?[J]. Aerospace Science and Technology, 2024, 155: 109681. |
36 | GAO Z Y, ZHANG M, ZHANG Z B, et al. Numerical study of high-energy spark ignition characteristics in a scramjet combustor[J]. Case Studies in Thermal Engineering, 2024, 63: 105403. |
37 | LEONOV S, YARANTSEV D, NAPARTOVICH A, et al. Plasma-assisted ignition and flameholding in high-speed flow?[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
38 | LEONOV S, YARANTSEV D, CARTER C. Experiments on electrically controlled flameholding on a plane wall in a supersonic airflow?[J]. Journal of Propulsion and Power, 2009, 25(2): 289-294. |
39 | FIRSOV A A, DOLGOV E V, LEONOV S B. Effect of DC-discharge geometry on ignition efficiency in supersonic flow?[J]. Journal of Physics: Conference Series, 2018, 1112: 012011. |
40 | LEONOV S B, ELLIOTT S, CARTER C, et al. Modes of plasma-stabilized combustion in cavity-based M=2 configuration?[J]. Experimental Thermal and Fluid Science, 2021, 124: 110355. |
41 | FIRSOV A, SAVELKIN K V, YARANTSEV D A, et al. Plasma-enhanced mixing and flameholding in supersonic flow?[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2048): 20140337. |
42 | LEONOV S, YARANTSEV D, SABELNIKOV V. Electrically driven combustion near the plane wall in a supersonic duct?[C]∥Progress in Propulsion Physics, 2011. |
43 | LEONOV S, FIRSOV A, YARANTSEV D, et al. Temperature measurement in plasma-assisted combustor by TDLAS?[C]?∥43rd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2012. |
44 | SAVELKIN K V, YARANTSEV D A, ADAMOVICH I V, et al. Ignition and flameholding in a supersonic combustor by an electrical discharge combined with a fuel injector[J]. Combustion and Flame, 2015, 162(3): 825-835. |
45 | LEONOV S B, HOUPT A W, HEDLUND B E. Experimental study of ignition, reignition and flameholding by Q-DC electrical discharge in a model scramjet[C]?∥48th AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2017. |
46 | ELLIOTT S, LAX P, LEONOV S B, et al. Acetone PLIF visualization of the fuel distribution at plasma-enhanced supersonic combustion?[J]. Experimental Thermal and Fluid Science, 2022, 136: 110668. |
47 | FENG R, LI J, WU Y, et al. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor?[J]. Aerospace Science and Technology, 2018, 79: 145-153. |
48 | FENG R, ZHU J J, WANG Z G, et al. Dynamic characteristics of a gliding arc plasma-assisted ignition in a cavity-based scramjet combustor?[J]. Acta Astronautica, 2020, 171: 238-244. |
49 | FENG R, HUANG Y H, ZHU J J, et al. Ignition and combustion enhancement in a cavity-based supersonic combustor by a multi-channel gliding arc plasma?[J]. Experimental Thermal and Fluid Science, 2021, 120: 110248. |
50 | FENG R, SUN M B, WANG H B, et al. Experimental investigation of flameholding in a cavity-based scramjet combustor by a multi-channel gliding arc?[J]. Aerospace Science and Technology, 2022, 121: 107381. |
51 | TIAN Y F, ZHU J J, SUN M B, et al. Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge?[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5697-5705. |
52 | FENG R, WANG Z G, SUN M B, et al. Multi-channel gliding arc plasma-assisted ignition in a kerosene-fueled model scramjet engine?[J]. Aerospace Science and Technology, 2022, 126: 107606. |
53 | FENG R, ZHU J J, WANG Z G, et al. Suppression of combustion mode transitions in a hydrogen-fueled scramjet combustor by a multi-channel gliding arc plasma?[J]. Combustion and Flame, 2022, 237: 111843. |
54 | KOROLEV Y D, MATVEEV I B. Nonsteady-state processes in a plasma pilot for ignition and flame control[J]. IEEE Transactions on Plasma Science, 2006, 34(6): 2507-2513. |
55 | MATVEEV I B, MATVEEVA S A, KIRCHUK E Y, et al. Plasma fuel nozzle as a prospective way to plasma-assisted combustion?[J]. IEEE Transactions on Plasma Science, 2010, 38(12): 3313-3318. |
56 | LIN B X, WU Y, ZHU Y F, et al. Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement?[J]. Applied Energy, 2019, 235: 1017-1026. |
57 | FENG R, LI J, WU Y, et al. Ignition and blow-off process assisted by the rotating gliding arc plasma in a swirl combustor?[J]. Aerospace Science and Technology, 2020, 99: 105752. |
58 | 耿华东, 陈一, 崔巍, 等. 滑动弧放电等离子体激励的值班火焰头部放电特性实验[J]. 空军工程大学学报(自然科学版), 2022, 23(1): 53-63. |
GENG H D, CHEN Y, CUI W, et al. An experiment in discharge characteristics of pilot flame dome based on gliding arc discharge plasma actuation?[J]. Journal of Air Force Engineering University (Natural Science Edition), 2022, 23(1): 53-63 (in Chinese). | |
59 | JIA M, LIN D, HUANG S F, et al. Experimental investigation on gliding arc plasma ignition in double-head swirling combustor?[J]. Aerospace Science and Technology, 2021, 113: 106726. |
60 | JIA M, ZHANG Z B, CUI W, et al. Experimental investigation of a gliding discharge plasma jet igniter?[J]. Chinese Journal of Aeronautics, 2022, 35(6): 116-124. |
61 | CHENG X Y, SONG H M, HUANG S F, et al. Discharge and jet characteristics of gliding arc plasma igniter driven by pressure difference?[J]. Plasma Science and Technology, 2022, 24(11): 115502. |
62 | 侯豪豪, 陈一, 屈美娇, 等. 燃烧室减速熄火条件下滑动弧等离子体对火焰演化的影响[J]. 推进技术, 2025, 46(2): 159-168. |
HOU H H, CHEN Y, QU M J, et al. Effects of gliding arc plasma on flame evolution under combustor deceleration and flameout conditions?[J]. Journal of Propulsion Technology, 2025, 46(2): 159-168 (in Chinese). | |
63 | HUANG S F, WU Y, ZHANG K, et al. Experimental investigation on spray and ignition characteristics of plasma actuated bluff body flameholder?[J]. Fuel, 2022, 309: 122215. |
64 | CHENG X Y, SONG H M, SUN J L, et al. Experimental investigation on ignition of hyperburner based on gliding arc plasma igniter driven by pressure difference?[J]. Processes, 2022, 10(9): 1886. |
65 | ZANG Y X, JIA M, ZHANG Z B, et al. Experimental investigation on gliding arc plasma ignition and assisted combustion actuator?[J]. IEEE Transactions on Plasma Science, 2023, 51(1): 127-139. |
66 | 林冰轩. 高空极端条件航空发动机等离子体点火助燃基础研究[D]. 西安: 空军工程大学, 2019. |
LIN B X. Research on plasma asssisted ignition and combustion for aero-engines under high-altitude extreme conditions?[D]. Xi’?an: Air Force Engineering University, 2019 (in Chinese). | |
67 | LIN D, JIA M, ZHANG Z B, et al. Experimental investigation of ignition by multichannel gliding arcs in a swirl combustor?[J]. Journal of Physics D: Applied Physics, 2021, 54(21): 215205. |
68 | 刘磊, 胡长淮, 陈一, 等. 反向和同向旋流滑动弧等离子体点火助燃头部的燃烧特性[J]. 燃烧科学与技术, 2024, 30(3): 311-322. |
LIU L, HU C H, CHEN Y, et al. Combustion characteristics of reverse and isotropic rotary arc plasma ignition-assisted heads?[J]. Journal of Combustion Science and Technology, 2024, 30(3): 311-322 (in Chinese). | |
69 | HUANG S F, WU Y, ZHANG K, et al. Experimental investigation of spray characteristics of gliding arc plasma airblast fuel injector[J]. Fuel, 2021, 293: 120382. |
70 | SUN J L, JIN D, HUANG S F, et al. The characteristics of gliding arc plasma and its activating effect for ramjet combustion[J]. Energies, 2022, 15(12): 4260. |
71 | CHENG X Y, JIN D, SONG H M, et al. Experimental study on the ignition and assisted combustion of gliding arc plasma for circumferential vapor flameholder in the ramjet combustor?[J]. Applied Thermal Engineering, 2025, 263: 125346. |
72 | 胡长淮, 何立明, 陈一, 等. 燃烧室头部激励的等离子体强化燃烧特性实验研究[J]. 推进技术, 2021, 42(12): 2762-2771. |
HU C H, HE L M, CHEN Y, et al. Experimental research on characteristics of plasma-enhanced combustion excited by combustor dome?[J]. Journal of Propulsion Technology, 2021, 42(12): 2762-2771 (in Chinese). | |
73 | 程伟达, 于锦禄, 陈朝, 等. 基于滑动弧的燃烧室头部强化燃烧特性[J]. 航空动力学报, 2022, 37(7): 1392-1402. |
CHENG W D, YU J L, CHEN Z, et al. Enhanced combustion characteristics of combustor head based on gliding arc?[J]. Journal of Aerospace Power, 2022, 37(7): 1392-1402 (in Chinese). | |
74 | ZHANG L, YU J L, SU W H, et al. Characterization of gliding arc plasma ignition in aeroengine swirl combustion chamber[J]. 2024, 36(12): 125112. |
75 | WANG S B, YU J L, YE J F, et al. Ignition characteristics of pre-combustion plasma jet igniter?[J]. Chinese Physics B, 2019, 28(11): 114702. |
76 | YU J L, ZHANG B W, YU Y, et al. Characteristics of a pre-combustion plasma jet igniter[J]. Chinese Journal of Aeronautics, 2024, 37(7): 178-189. |
77 | ZHANG L, YU J L, CHENG W D, et al. Study on ignition characteristics of kerosene pre-combustion plasma jet igniter[J]. Physics of Fluids, 2024, 36(6): 065130. |
78 | 宋少雷, 李雅军, 王玥, 等. 连续弧等离子点火器结构优化研究[J]. 热能动力工程, 2020, 35(10): 43-50. |
SONG S L, LI Y J, WANG Y, et al. Research on optimization design of continuous plasma igniter[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(10): 43-50 (in Chinese). | |
79 | LIU S Z, ZHAO N B, ZHANG J G, et al. Experimental and numerical investigations of plasma ignition characteristics in gas turbine combustors[J]. Energies, 2019, 12(8): 1511. |
80 | YOU B C, LIU X, YANG R, et al. Experimental study of gliding arc plasma-assisted combustion in a blast furnace gas fuel model combustor: Flame structures, extinction limits and combustion stability[J]. Fuel, 2022, 322: 124280. |
81 | YOU B C, LIU X, KONG L, et al. Experimental study on direct ignition of blast furnace gas by plasma igniter in a gas turbine combustor?[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(16): 9306-9315. |
82 | SUN J G, TANG Y, LI S Q. Plasma-assisted stabilization of premixed swirl flames by gliding arc discharges[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6733-6741. |
83 | TANG Y, SUN J G, SHI B L, et al. Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges?[J]. Combustion and Flame, 2021, 231: 111483. |
84 | KIMURA I, AOKI H, KATO M. The use of a plasma jet for flame stabilization and promotion of combustion in supersonic air flows?[J]. Combustion and Flame, 1981, 42: 297-305. |
85 | SATO Y, SAYAMA M, OHWAKI K, et al. Effectiveness of plasma torches for ignition and flameholding in scramjet?[J]. Journal of Propulsion and Power, 1992, 8(4): 883-889. |
86 | MASUYA G, KUDOU K, MURAKAMI A, et al. Some governing parameters of plasma torch igniter/flameholder in a scramjet combustor?[J]. Journal of Propulsion and Power, 1993, 9(2): 176-181. |
87 | TAKITA K, TAKATORI F, MASUYA G. Effect of plasma torch feedstock on ignition characteristics in supersonic flow?[C]?∥36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2000. |
88 | MASUYA G, TAKITA K, TAKAHASHI K, et al. Effects of airstream Mach number on H2/N2 plasma igniter[C]∥39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
89 | KITAGAWA T, MORIWAKI A, MURAKAMI K, et al. Ignition characteristics of methane and hydrogen using a plasma torch in supersonic flow[J]. Journal of Propulsion and Power, 2003, 19(5): 853-858. |
90 | MURAKAMI K, NISHIKAWA A, TAKITA K, et al. Ignition characteristics of hydrocarbon fuels by plasma torch in supersonic flow?[C]?∥12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston: AIAA, 2003. |
91 | TAKITA K, MURAKAMI K, NAKANE H, et al. A novel design of a plasma jet torch igniter in a scramjet combustor?[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2843-2849. |
92 | TAKITA K, NAKANE H, MASUYA G. Optimization of double plasma jet torches in a scramjet combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2513-2520. |
93 | TAKITA K, ABE N, MASUYA G, et al. Ignition enhancement by addition of NO and NO2 from a N2/O2 plasma torch in a supersonic flow[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2489-2496. |
94 | MATSUBARA Y, TAKITA K. Effect of mixing ratio of N2/O2 feedstock on ignition by plasma jet torch[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3203-3209. |
95 | MATSUBARA Y, TAKITA K, MASUYA G. Combustion enhancement in a supersonic flow by simultaneous operation of DBD and plasma jet[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3287-3294. |
96 | BARBI E, MAHAN J R, O’BRIEN W F, et al. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications[J]. Journal of Propulsion and Power, 1989, 5(2): 129-133. |
97 | JACOBSEN L, GALLIMORE S, SCHETZ J, et al. An integrated aeroramp injector/plasma-igniter for hydrocarbon fuels in a supersonic flow. I-Experimental studies of the geometric configuration?[C]?∥10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2001. |
98 | GALLIMORE S, JACOBSEN L, O'BRIEN W, et al. An integrated aeroramp-injector/plasma-igniter for hydrocarbon fuels in supersonic flow. PartB: Experimental studies of the operating conditions?[R]. Reston: AIAA, 2001. |
99 | ANDERSON C, SCHETZ J, O’BRIEN W. Integrated liquid-fuel-injector/plasma-igniter for scramjets?[C]?∥12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston: AIAA, 2003. |
100 | GALLIMORE S D, JACOBSEN L S, O’BRIEN W F, et al. Operational sensitivities of an integrated scramjet ignition/fuel-injection system?[J]. Journal of Propulsion and Power, 2003, 19(2): 183-189. |
101 | BONANOS A M, SCHETZ J A, O’BRIEN W F, et al. Dual-mode combustion experiments with an integrated aeroramp-injector/plasma-torch igniter?[J]. Journal of Propulsion and Power, 2008, 24(2): 267-273. |
102 | 唐井峰, 向安定, 李寄, 等. 等离子体射流作用下光壁面超声速燃烧室点火试验研究[J]. 推进技术, 2021, 42(11): 2531-2537. |
TANG J F, XIANG A D, LI J, et al. Experimental study on plasma jet enhanced ignition in No-cavity supersonic combustor?[J]. Journal of Propulsion Technology, 2021, 42(11): 2531-2537 (in Chinese). | |
103 | LI J, TANG J F, ZHANG J L, et al. Flame establishment and flameholding modes spontaneous transformation in kerosene axisymmetric supersonic combustor with a plasma igniter[J]. Aerospace Science and Technology, 2021, 119: 107080. |
104 | LI J, TANG J F, ZHANG H R, et al. Dual-frequency excited plasma enhanced ignition in a supersonic combustion chamber?[J]. Aerospace Science and Technology, 2022, 129: 107849. |
105 | LI J, TANG J F, ZHANG H R, et al. Dual-frequency plasma promoting flameholding in a supersonic combustion chamber?[J]. Aerospace Science and Technology, 2022, 127: 107676. |
106 | 李飞, 余西龙, 顾洪斌, 等. 超声速气流中煤油射流的等离子体点火实验[J]. 航空动力学报, 2012, 27(4): 824-831. |
LI F, YU X L, GU H B, et al. Experiment on kerosene fueled scramjet ignition by using plasma torch[J]. Journal of Aerospace Power, 2012, 27(4): 824-831 (in Chinese). | |
107 | LI F, YU X L, TONG Y G, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology, 2013, 28(1): 72-78. |
108 | BRIESCHENK S, O’BYRNE S, KLEINE H. Visualization of jet development in laser-induced plasmas?[J]. Optics Letters, 2013, 38(5): 664. |
109 | BRIESCHENK S, KLEINE H, O’BYRNE S. Laser ignition of hypersonic air-hydrogen flow[J]. Shock Waves, 2013, 23(5): 439-452. |
110 | BRIESCHENK S, O’BYRNE S, KLEINE H. Laser-induced plasma ignition studies in a model scramjet engine?[J]. Combustion and Flame, 2013, 160(1): 145-148. |
111 | BRIESCHENK S, O’BYRNE S, KLEINE H. Ignition characteristics of laser-ionized fuel injected into a hypersonic crossflow?[J]. Combustion and Flame, 2014, 161(4): 1015-1025. |
112 | LI X P, LIU W D, PAN Y, et al. Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions?[J]. Acta Astronautica, 2017, 138: 79-84. |
113 | LIU C Y, SUN M B, WANG H B, et al. Ignition and flame stabilization characteristics in an ethylene-fueled scramjet combustor?[J]. Aerospace Science and Technology, 2020, 106: 106186. |
114 | KANTROWITZ A. Propulsion to orbit by ground-based lasers[J]. Acta Astronautica, 1972, 10: 74-76. |
115 | BAK M S, CAPPELLI M A. Successive laser ablation ignition of premixed methane/air mixtures[J]. Optics Express, 2015, 23(11): A419-A427. |
116 | TAKAHASHI E, KATO S. Laser ablation ignition of flammable gas?[J]. Japanese Journal of Applied Physics, 2021, 60(4): 047001. |
117 | LIANG T F, ZANG H W, ZHANG W, et al. Reliable laser ablation ignition of combustible gas mixtures by femtosecond filamentating laser?[J]. Fuel, 2022, 311: 122525. |
118 | TIAN Y F, CAI Z, SUN M B, et al. Ignition characteristics of scramjet combustor with laser ablation and laser-induced breakdown[J]. Journal of Propulsion and Power, 2022, 38(5): 799-808. |
119 | LIU J B, RONNEY P, KUTHI A, et al. Transient plasma ignition for lean burn applications[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
120 | LIU J B, WANG F, LEE L, et al. Effect of fuel type on flame ignition by transient plasma discharges[C]?∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
121 | LIU J B, WANG F, LEE L, et al. Effect of discharge energy and cavity geometry on flame ignition by transient plasma?[C]?∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
122 | SINGLETON D R, GUNDERSEN M A. Transient plasma fuel-air ignition?[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2214-2215. |
123 | Transient Plasma Systems[DB/OL]. [2025-02-17]. . |
124 | Home-TPS Ignition[DB/OL]. [2025-02-17]. . |
125 | PILLA G, GALLEY D, LACOSTE D A, et al. Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma?[J]. IEEE Transactions on Plasma Science, 2006, 34(6): 2471-2477. |
126 | LACOSTE D A, MOECK J P, DUROX D, et al. Effect of nanosecond repetitively pulsed discharges on the dynamics of a swirl-stabilized lean premixed flame?[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(10): 101501. |
127 | BARBOSA S, PILLA G, LACOSTE D A, et al. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor?[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2048): 20140335. |
128 | CAMPO F, WEIBEL D. Stability enhancements to a lean, premixed gas turbine fuel injector using a nanosecond pulsed plasma discharge[R]. 2016. |
129 | DEL CAMPO F G. Plasma-assisted control of combustion instabilities in low-emissions combustors at realistic conditions?[C]?∥AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
130 | DEL CAMPO F G. Design of a high pressure, optically accessible flame tube for plasma-assisted combustion studies[C]?∥AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
131 | SHANBOGUE S, WEIBEL D, DEL CAMPO F G, et al. Active control of large amplitude combustion oscillations using nanosecond repetitively pulsed plasmas[C]?∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
132 | 赵庆武, 程勇, 杨雪, 等. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421. |
ZHAO Q W, CHENG Y, YANG X, et al. A high-frequency nanosecond-pulsed ignition system for plasma assisted ignition and combustion?[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 414-421 (in Chinese). | |
133 | 刘静远, 王宁, 赵庆武, 等. 纳秒脉冲放电参数对点火性能的影响[J]. 上海交通大学学报, 2022, 56(1): 28-34. |
LIU J Y, WANG N, ZHAO Q W, et al. Effect of nanosecond pulse discharge parameters on ignition performance?[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 28-34 (in Chinese). | |
134 | ZHAO Q W, XIONG Y, YANG X, et al. Experimental study on multi-channel ignition of propane-air by transient repetitive nanosecond surface dielectric barrier discharge[J]. Fuel, 2022, 324: 124723. |
135 | SUN W T, WON S H, JU Y G. In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture?[J]. Combustion and Flame, 2014, 161(8): 2054-2063. |
136 | JU Y G, XU B. Theoretical and experimental studies on mesoscale flame propagation and extinction[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2445-2453. |
137 | JU Y G. Understanding cool flames and warm flames[J]. Proceedings of the Combustion Institute, 2021, 38(1): 83-119. |
138 | WON S H, JIANG B, DIéVART P, et al. Self-sustaining n-heptane cool diffusion flames activated by ozone?[J]. Proceedings of the Combustion Institute, 2015, 35(1): 881-888. |
139 | LEFKOWITZ J K, GUO P, ROUSSO A, et al. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2048): 20140333. |
140 | CHEN H D, ZHANG R Z, LIAO H D, et al. Kinetic insights into plasma-assisted low-temperature oxidation of propane with synchrotron photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5499-5509. |
141 | WüRMEL J, SIMMIE J M. CFD studies of a twin-piston rapid compression machine?[J]. Combustion and Flame, 2005, 141(4): 417-430. |
142 | CROCHET M, MINETTI R, RIBAUCOUR M, et al. A detailed experimental study of n-propylcyclohexane autoignition in lean conditions[J]. Combustion and Flame, 2010, 157(11): 2078-2085. |
143 | POPOV N A, STARIKOVSKAIA S M. Relaxation of electronic excitation in nitrogen/oxygen and fuel/air mixtures: Fast gas heating in plasma-assisted ignition and flame stabilization?[J]. Progress in Energy and Combustion Science, 2022, 91: 100928. |
144 | POPOV N A. Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285201. |
145 | MONTELLO A, YIN Z, BURNETTE D, et al. Picosecond CARS measurements of nitrogen vibrational loading and rotational/translational temperature in nonequilibrium discharges?[C]?∥43rd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2012. |
146 | BARLEON N. Detailed modeling and simulations of nanosecond repetitively pulsed discharges for plasma-assisted combustion?[D]. Toulouse: Institut National Polytechnique de Toulouse, 2022. |
147 | WANG L, MEBEL A M, YANG X M, et al. Ab initio/RRKM study of the O(1D)+NH3 reaction: Prediction of product branching ratios?[J]. The Journal of Physical Chemistry A, 2004, 108(52): 11644-11650. |
148 | MEI B W, ZHANG X Y, MA S Y, et al. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions[J]. Combustion and Flame, 2019, 210: 236-246. |
149 | MAO X Q, ROUSSO A, CHEN Q, et al. Numerical modeling of ignition enhancement of CH4/O2/He mixtures using a hybrid repetitive nanosecond and DC discharge?[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5545-5552. |
150 | MAO X Q, CHEN Q, ROUSSO A C, et al. Effects of controlled non-equilibrium excitation on H2/O2/He ignition using a hybrid repetitive nanosecond and DC discharge[J]. Combustion and Flame, 2019, 206: 522-535. |
151 | TANEJA T S, JOHNSON P N, YANG S. Nanosecond pulsed plasma assisted combustion of ammonia-air mixtures: Effects on ignition delays and NO x emission[J]. Combustion and Flame, 2022, 245: 112327. |
152 | WANG Y, GUO P, CHEN H T, et al. Numerical modeling of ignition enhancement using repetitive nanosecond discharge in a hydrogen/air mixture I: Calculations assuming homogeneous ignition[J]. Journal of Physics D: Applied Physics, 2021, 54(6): 065501. |
153 | MAO X Q, ZHONG H T, ZHANG T H, et al. Modeling of the effects of non-equilibrium excitation and electrode geometry on H2/air ignition in a nanosecond plasma discharge?[J]. Combustion and Flame, 2022, 240: 112046. |
154 | FONTANAROSA D, MEHDI G, DE GIORGI M G, et al. Assessment of the impact of nanosecond plasma discharge on the combustion of methane air flames[J]. E3S Web of Conferences, 2020, 197: 10001. |
155 | BAN Y Y, ZHANG F, ZHONG S H, et al. The numerical simulation of nanosecond-pulsed discharge-assisted ignition in lean-burn natural gas HCCI engines[J]. Frontiers in Mechanical Engineering, 2022, 8: 930109. |
156 | LI S, BAI C J, CHEN X X, et al. Numerical investigation on plasma assisted ignition of methane/air mixture excited by the synergistic nanosecond repetitive pulsed and DC discharge?[J]. Journal of Physics D: Applied Physics, 2021, 54(1): 015203. |
157 | JOHNSON P N, TANEJA T S, YANG S. Plasma-based global pathway analysis to understand the chemical kinetics of plasma-assisted combustion and fuel reforming[J]. Combustion and Flame, 2023, 255: 112927. |
158 | SUZUKI M, MORII Y, NAKAMURA H, et al. Effect of computational constraints on zero-dimensional computations for the nanosecond-order ignition process of the CH4/air mixture[J]. Combustion, Explosion, and Shock Waves, 2021, 57(4): 424-432. |
159 | SUN J T, CHEN Q, ZHAO B M, et al. Temperature-dependent ion chemistry in nanosecond discharge plasma-assisted CH4 oxidation[J]. Journal of Physics D: Applied Physics, 2022, 55(13): 135203. |
160 | DEAK N, BELLEMANS A, BISETTI F. Plasma-assisted ignition of methane/air and ethylene/air mixtures: Efficiency at low and high pressures?[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6551-6558. |
161 | FAINGOLD G, LEFKOWITZ J K. A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma?[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6661-6669. |
162 | QIU Y, ZHU Y, WU Y, et al. Numerical investigation of the hybrid pulse–DC plasma assisted ignition and NO[formula omitted] emission of NH[formula omitted]/N[formula omitted]/O[formula omitted] mixture?[J]. Combustion and Flame, 2023, 258: 1-11. |
163 | MAO X Q, ZHONG H T, LIU N, et al. Ignition enhancement and NO x formation of NH3/air mixtures by non-equilibrium plasma discharge?[J]. Combustion and Flame, 2024, 259: 113140. |
164 | SHAHSAVARI M, KONNOV A A, VALERA-MEDINA A, et al. On nanosecond plasma-assisted ammonia combustion: Effects of pulse and mixture properties[J]. Combustion and Flame, 2022, 245: 112368. |
165 | TANEJA T S, YANG S. Numerical modeling of plasma assisted pyrolysis and combustion of ammonia?[C]?∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
166 | YOU B C, LI S P, ZHENG H T, et al. Numerical investigation of nanosecond plasma-assisted ignition in blast furnace gas[J]. Fuel, 2024, 365: 131244. |
167 | SNOECKX R, JUN D, LEE B J, et al. Kinetic study of plasma assisted oxidation of H2 for an undiluted lean mixture[J]. Combustion and Flame, 2022, 242: 112205. |
168 | SNOECKX R, CHA M S. Kinetic study of plasma assisted oxidation of H2 for an undiluted rich mixture?[J]. Combustion and Flame, 2023, 250: 112638. |
169 | 班杨杨, 张帆, 钟生辉, 等. 交流放电等离子体助燃乙烯/空气的数值模拟[J]. 内燃机工程, 2022, 43(1): 58-66. |
BAN Y Y, ZHANG F, ZHONG S H, et al. Numerical simulation of AC discharge plasma assisted ethylene/air combustion[J]. Chinese Internal Combustion Engine Engineering, 2022, 43(1): 58-66 (in Chinese). | |
170 | LI Z Y, ZHU Y F, PAN D, et al. Characterization of a gliding arc igniter from an equilibrium stage to a non-equilibrium stage using a coupled 3D-0D approach?[J]. Processes, 2023, 11(3): 873. |
171 | BAN Y Y, ZHONG S H, ZHU J J, et al. Effects of non-equilibrium plasma and equilibrium discharge on low-temperature combustion in lean propane/air mixtures[J]. Fuel, 2023, 339: 127353. |
172 | ZHONG H T, MAO X Q, ROUSSO A C, et al. Kinetic study of plasma-assisted n-dodecane/O2/N2 pyrolysis and oxidation in a nanosecond-pulsed discharge[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6521-6531. |
173 | LIU N, CHEN Q, JIANG X W, et al. Three-stage hybrid NSD/DC plasma assisted n-C5H12/O2/N2 ignition: Improved energy efficiency and reduced NO x /N2O emissions?[J]. Proceedings of the Combustion Institute, 2024, 40(1-4): 105449. |
174 | PANCHESHNYI S, EISMANN B, HAGELAAR G, et al. Computer code ZDPlasKin[M]. Toulouse: University of Toulouse, 2008: 1. |
175 | LUTZ A, KEE R, MILLER J. SENKIN: A Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis[R]. 1987. |
176 | GOODWIN D G, MOFFAT H K, SPETH R L. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.2.0[R]. 2015. |
177 | SHAO X, LACOSTE D A, IM H G. ChemPlasKin: a general-purpose program for unified gas and plasma kinetics simulations[J]. Applications in Energy and Combustion Science, 2024, 19: 100280. |
178 | HAGELAAR G J M, PITCHFORD L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models?[J]. Plasma Sources Science Technology, 2005, 14(4): 722-733. |
179 | FLITTI A, PANCHESHNYI S. Gas heating in fast pulsed discharges in N2-O2 mixtures[J]. The European Physical Journal Applied Physics, 45(2): 21001. |
180 | HEIJKERS S, BOGAERTS A. CO2 conversion in a gliding arc plasmatron: Elucidating the chemistry through kinetic modeling[J]. The Journal of Physical Chemistry C, 2017, 121(41): 22644-22655. |
181 | 气体放电等离子体基础数据库[DB/OL]. (2022-04-05). . |
Gas Discharge Plasma Database[DB/OL].(2022-04-05). (in Chinese). | |
182 | NIJDAM S, TEUNISSEN J, EBERT U. The physics of streamer discharge phenomena?[J]. Plasma Sources Science and Technology, 2020, 29(10): 103001. |
183 | KUSHNER M J. Modelling of microdischarge devices: Plasma and gas dynamics[J]. Journal of Physics D: Applied Physics, 2005, 38(11): 1633-1643. |
184 | GRUBERT G K, BECKER M M, LOFFHAGEN D. Why the local-mean-energy approximation should be used in hydrodynamic plasma descriptions instead of the local-field approximation[J]. Physical Review E, 2009, 80(3): 036405. |
185 | LI C, BROK W J M, EBERT U, et al. Deviations from the local field approximation in negative streamer heads[J]. 2007, 101(12): 123305. |
186 | BOEUF J P, LAGMICH Y, UNFER T, et al. Electrohydrodynamic force in dielectric barrier discharge plasma actuators?[J]. Journal of Physics D Applied Physics, 2007, 40(3): 652-662. |
187 | DECONINCK T, MAHADEVAN S, RAJA L L. Computational simulation of coupled nonequilibrium discharge and compressible flow phenomena in a microplasma thruster[J]. Journal of Applied Physics, 2009, 106(6): 063305. |
188 | UNFER T, BOEUF J P. Modeling and comparison of sinusoidal and nanosecond pulsed surface dielectric barrier discharges for flow control?[J]. Plasma Physics and Controlled Fusion, 2010, 52(12): 124019. |
189 | THOLIN F, BOURDON A. Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2013, 46(36): 365205. |
190 | NORBERG S A, JOHNSEN E, KUSHNER M J. Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air?[J]. Plasma Sources Science and Technology, 2015, 24(3): 035026. |
191 | LIETZ A M, JOHNSEN E, KUSHNER M J. Plasma-induced flow instabilities in atmospheric pressure plasma jets[J]. Applied Physics Letters, 2017, 111(11): 114101. |
192 | ZHU Y F, SHCHERBANEV S, BARON B, et al. Nanosecond surface dielectric barrier discharge in atmospheric pressure air: I. measurements and 2D modeling of morphology, propagation and hydrodynamic perturbations?[J]. Plasma Sources Science and Technology, 2017, 26(12): 125004. |
193 | THOLIN F. Numerical simulation of nanosecond repetitively pulsed discharges in air at atmospheric pressure : Application to plasma-assisted combustion?[D]. Paris: Ecole Centrale Paris, 2012. |
194 | KOBAYASHI S, BONAVENTURA Z, THOLIN F, et al. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications?[J]. Plasma Sources Science and Technology, 2017, 26(7): 075004. |
195 | SHARMA A, SUBRAMANIAM V, SOLMAZ E, et al. Fully coupled modeling of nanosecond pulsed plasma assisted combustion ignition?[J]. Journal of Physics D: Applied Physics, 2019, 52(9): 095204. |
196 | MAO X Q, ZHONG H T, JU Y G. 2D modeling of the electrode geometry effects on plasma-assisted H2/air ignition?[C]?∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
197 | BARLEON N, CHENG L, CUENOT B, et al. Investigation of the impact of NRP discharge frequency on the ignition of a lean methane-air mixture using fully coupled plasma-combustion numerical simulations?[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5521-5530. |
198 | XIN Z Y, ZHENG Z C, HU Y, et al. Numerical modeling of plasma assisted ignition of CH4/O2/He mixture by the nanosecond repetitive pulsed surface dielectric barrier discharge[J]. Fuel, 2024, 357: 129975. |
199 | MAO X Q, ZHONG H T, WANG Z Y, et al. Effects of inter-pulse coupling on nanosecond pulsed high frequency discharge ignition in a flowing mixture[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5457-5464. |
200 | ZHAN Q, BAN Y Y, ZHANG F, et al. Numerical simulation of flame propagation characteristics of NH3/Air flames assisted by non-equilibrium plasma discharge[J]. Combustion and Flame, 2025, 271: 113809. |
201 | BAN Y Y, ZHANG F, ZHANG N Y, et al. The improved performance of plasma assisted combustion (PAC) simulations using the fully analytical Jacobian[J]. Combustion and Flame, 2024, 270: 113788. |
202 | SUN S R, KOLEV S, WANG H X, et al. Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics[J]. Plasma Sources Science and Technology, 2017, 26(1): 015003. |
203 | VAN ALPHEN S, AHMADI ESHTEHARDI H, O’MODHRAIN C, et al. Effusion nozzle for energy-efficient NO production in a rotating gliding arc plasma reactor[J]. Chemical Engineering Journal, 2022, 443: 136529. |
204 | BOURLET A, LABAUNE J, THOLIN F, et al. Numerical model of restrikes in DC gliding arc discharges[C]?∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
205 | CASTELA M, FIORINA B, COUSSEMENT A, et al. Modelling the impact of non-equilibrium discharges on reactive mixtures for simulations of plasma-assisted ignition in turbulent flows?[J]. Combustion and Flame, 2016, 166: 133-147. |
206 | CASTELA M, STEPANYAN S, FIORINA B, et al. A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4095-4103. |
207 | BARLéON N, CHENG L, CUENOT B, et al. A phenomenological model for plasma-assisted combustion with NRP discharges in methane-air mixtures: PACMIND?[J]. Combustion and Flame, 2023, 253: 112794. |
208 | WANG Y, KONG C D, WANG C Y, et al. Characteristics of unsteady rotating gliding arc induced ignition of ammonia-air mixture in swirling flow[J]. Fuel, 2024, 364: 131117. |
209 | WANG Y, KONG C D, WU X J, et al. Characteristics of rotating gliding arc induced thermal ignition of lean methane-air mixtures?[J]. Applications in Energy and Combustion Science, 2023, 14: 100154. |
210 | LI Z, ZHAO N, MA X, et al. Numerical investigations of the effects of gliding arc discharge on C3H8/air ignition using a new three-dimensional phenomenological gliding arc model?[R]. 2024. |
/
〈 |
|
〉 |