旋翼桨叶结构载荷FBG传感试飞技术

  • 程卫真 ,
  • 王泽峰 ,
  • 耿丽松 ,
  • 郑甲宏 ,
  • 焦帅克 ,
  • 李康
展开
  • 中国飞行试验研究院

收稿日期: 2025-02-10

  修回日期: 2025-03-20

  网络出版日期: 2025-03-28

Flight test measurement for the structural load of rotor blade based on fiber Bragg grating

  • CHENG Wei-Zhen ,
  • WANG Ze-Feng ,
  • GENG Li-Song ,
  • ZHENG Jia-Hong ,
  • JIAO Shuai-Ke ,
  • LI Kang
Expand

Received date: 2025-02-10

  Revised date: 2025-03-20

  Online published: 2025-03-28

摘要

应用FBG传感器表征旋翼桨叶结构载荷,设计FBG传感网络及其机载测量系统用于旋翼桨叶结构载荷飞行实测。在试飞工程中,基于FBG传感器差分信号,提出易于工程实现的载荷校准试验方法,分析给出载荷测量误差优于5%的实测工程要求。将FBG传感飞行实测结果与应变计测量结果对比,表明旋翼桨叶结构载荷FBG传感同步动态飞行实测技术的可行性,为开展基于FBG传感的直升机强度试飞积累经验。

本文引用格式

程卫真 , 王泽峰 , 耿丽松 , 郑甲宏 , 焦帅克 , 李康 . 旋翼桨叶结构载荷FBG传感试飞技术[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31863

Abstract

The application of FBG sensors to characterize the structural loads of rotor blades was studied. An FBG sensor network and its airborne measurement system were designed for the in-flight measurement of rotor blade structural loads. During the flight test, a calibration test method for rotor blade structural loads based on the differential signals of FBG sensors was proposed, which is easy to implement in engineering. The engineering solution with a load measurement error better than 5% was analyzed and given. The in-flight measurement results of FBG sensors were compared with those of strain gauges, indicating the feasibility of the synchronous dynamic in-flight measurement technology of rotor blade structural loads using FBG sensors.

参考文献

[1] 廖延彪, 黎敏, 张敏, 等.光纤传感技术及应用[M].北京:清华大学出版社, 2009.1:20-30.
Liao Yanbiao, Li Min, Zhang Min, et al.Optical fiber sensing techniques and applications [M]. Beijing: Tsinghua university press, 2009.1:20-30 (in Chinese).
[2] 薛景锋,宋昊,王文娟. 光纤光栅在航空结构健康监测中的应用前景 [J]. 航空制造技术. 2012,12:45-49.
Xue Jingfeng, Song Hao, Wang Wenjuan.Application of Optical Fiber Grating in Health Monitoring for Air-craft Structure[J]. Aeronautical Manufacturing Tech-nology, 2012, (22):45-49 (in Chinese).
[3] Raffaella D S. Fiber optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications[J]. Sensors, 2015, 15(8):18666-18713.
[4] Iele M, Leone M, Consales G V, et al. Load monitoring of aircraft landing gears using fiber optic sensors[J]. Sensors and Actuators:A. Physical, 2018, 281:31-41.
[5] Iadicicco A, Natale D, Di P P, et al. Strain monitoring of a composite drag strut in aircraft landing gear by fiber Bragg grating sensors[J]. Sensors (Basel, Switzerland), 2019, 19(10): 31096575.
[6] LukaszSwiech. Calibration of a load measurement system for an unmanned aircraft composite wing based on fiber Bragg gratings and electrical strain gauges[J]. Aerospace, 2020, 7(3): 7030027
[7]褚园园, 吴越, 黄鹏宇, 陈诗, 闫光.基于FBG的飞机起落架载荷测试技术研究[J].半导体光电, 2022, 43(1):182-187.
Chu Yuanyuan, Wu Yue, Huang Pengyu, et al. Re-search on Load Testing Technology of Aircraft Land-ing Gear Based on FBG[J]. Semiconductor Optoelec-tronics, 2022, 43(1):182-187(in Chinese).
[8] 鹿利单, 闫光, 刘锋, 祝连庆.基于预拉伸基片式FBG的工字梁载荷测试[J].压电与声光, 2017, 39(4):619-623.
Lu Lidan, Yan Guang, Liu Feng, et al. Joist load test based on Prestretching substrate FBG sensors[J]. Pie-zoelectrics & Acoustooptics, 2017, 39(4):619-623(in Chinese).
[9] 黄勇.基于光纤传感的襟翼操纵载荷试飞技术[J].航空学报, 2020, 41(4):127-133.
Huang Yong. Flight test technic for flap operayion load with optical fiber sensing[J]. Acta Aeronautica et As-tronautica Sinica, 2020, 41(4):127-133 (in Chinese).
[10] 鲁明宇, 马超, 李翔宇, 张智, 武兆伟, 李栋成, 高丽敏.飞机作动器连杆光纤光栅载荷校准方法[J].数据采集与处理, 2020, 35(2):270-277.
Lu Mingyu, Ma Chao, Li Xiangyu, et al. Load calibra-tion method of actuator connecting panels for aircraft based on Fiber Bragg Grating sensors[J]. Journal of acquisition and processing, 2020, 35(02):270-277(in Chinese).
[11] 蒋熙馨.旋转叶片动应变FBG分布式检测及振动估计研究 [D]. 武汉理工大学. 2014.
Jiang, Xixin. Rotating blade' s dynamic strain disribut-ed measurement and vibration estimation research based on FBG. Journal of Applied Optics [D], Wuhan University of Technology. 2014 (in Chinese).
[12] 吴慧峰, 董瑞.基于神经网络的直升机旋翼桨叶载荷模型研究[J].桂林航天工业学院学报, 2022, 27(3):328-334.
Wu Huifeng, Dong Rui. Study on load model of heli-copter rotor blade based on neural network[J]. Journal of Guilin University of Aerospace Technology, 2022, 27(3):328-334 (in Chinese).
[13] 梁磊, 朱振华, 王慧, 等.基于光纤光栅的直升机桨叶载荷测试技术研究[J]. 光电子·激光, 2019, 30(12):1280-1285.
Liang Lei, Zhu Zhenhua, Wang Hui, et al.Research on testing technology of helicopter blade load based on FBG[J]. Journal of Optoelectronics·Laser, 2019, 30(12):1280-1285 (in Chinese).
[14]陈文,夏品奇.采用光纤传感测量的直升机旋翼桨叶分布载荷识别[J].振动工程学报, 2009, 22(2):183-187.
Chen Wen,Xia Pinqi. Identification of helicopter ro-tor blade distributed loads by using fiber optic sensor measurement [J]. Journal of Vibration Engineering,2009,22(2):183-187(in Chinese).
[15] J Serafini, G Bernardini, L Mattioni, et al. Non-invasive dynamic measurement of helicopter blades[J]. Journal 0f Physics: Conference Series, 2017, 882(1), article id.012014.
[16] 程卫真.共轴双旋翼桨叶结构载荷试飞研究[J].应用力学学报, 2019, 036(005):1005-1011.
Cheng Weizhen.Flight test technique for twin rotor blade structural loads of a coaxial helicop-ter[J].Chinese Journal of Applied Mechan-ics, 2019, 036(005):1005-1011(in Chinese).
文章导航

/