During hypersonic atmospheric entry, vehicles encounter the "blackout" phenomenon, which severely affects communications. To accurately simulate the plasma flow field, it is essential to rely on accurate chemical reaction models. However, the applicability range of existing models has not been fully defined. This study employs sensi-tivity analysis to analyze the stagnation line flow field of the spherical nose in the flight corridor, aiming to evaluate five ionization reactions. The study finds that, in the altitude range of 58 to 64 km and Mach number range of 11-15 , only the associative ionization reaction of nitrogen(N) and oxygen(O) atoms needs to be considered. In the altitude range of 64 to 70 km and Mach number range of 15-19, in addition to the associative ionization reaction of N and O atoms, the associative ionization reaction of O atoms must also be considered. Furthermore, in the altitude range of 64 to 70 km and Mach number range of 19-22, the associative ionization reaction between N atoms also become significant. Within the flight altitude range of 60 to 70 km and Mach number range of 22 to 26, it is necessary to consider the electron-impact ionization reactions of N and O atoms. Meanwhile, all ionization reactions should be taken into account. This study provides important theoretical basis and reference for the selection and application of chemical reaction models, which helps to improve the accuracy and reliability of plasma flow field simulation for re-entry vehicles.
[1]Anderson J D.Hypersonic and high temperature gas dynamics, Second Edition[M]. Washington: American Institute of Aeronautics and Astronautics, 2006.
[2] 李小平, 刘言明, 谢楷.高速飞行器等离子体鞘套电磁波传播理论与通信技术[M]. 北京: 科学出版社, 2018
[3]Li X P, Liu Y M, Xie K.Plasma Sheath Electromagneic wave propagation theory and communication[M]. Bei-jing: China Science Publishing & Media Ltd, 2018(in Chinese)
[4]Zhang W, Zhang Z, Wang X, et al.A review of the math-ematical modeling of equilibrium and nonequilibrium hy-personic flows[J].Advances in Aerodynamics, 2022, 4(1):38-
[5]Zhao W, Yang X, Wang J, et al.Evaluation of thermody-namic and chemical kinetic models for hypersonic and high-temperature flow simulation[J].Applied Sciences, 2023, 13(17):9991-
[6]Dunn M G, Kang S.Theoretical and experimental studies of reentry plasmas: NASA-CR-2232 [R]. Washington: Nasa Contractor Report, 1973.
[7]Gupta R N, Yos J M, Thompson R A, et al.A review of reaction rates and thermodynamic and transport proper-ties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-PR-1232 [R]. Washington: NASA Reference Publica-tion, 1990.
[8]PARK C.On convergence of computation of chemically reacting flows[C]//23rd Aerospace Sciences Meeting. Reno: American Institute of Aeronautics and Astro-nautics, 1985.
[9]Park C.Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen[J].Journal of Thermophysics and Heat Transfer, 1988, 2(1):8-
[10] Park C.A review of reaction rates in high temperature air[C]//24th Thermophysics Conference. Buffalo: Ameri-can Institute of Aeronautics and Astronautics, 1989.
[11]Park C.Review of chemical-kinetic problems of future NASA missionsI - Earth entries[J].Journal of Thermo-physics and Heat Transfer, 1993, 7(3):385-
[12]Park C, Jaffe R L, Partridge H.Chemical-Kinetic Parame-ters of Hyperbolic Earth Entry[J].Journal of Thermo-physics and Heat Transfer, 2001, 15(1):76-
[13]Blottner F G.Viscous shock layer at the stagnation point with nonequilibrium air chemistry[J].AIAA Journal, 1969, 7(12):2281-
[14]Kim J G, Jo S M.Modification of chemical-kinetic pa-rameters for 11-air species in re-entry flows[J].International Journal of Heat and Mass Transfer, 2021, 169:120950-
[15]Wang X Y, Yan C, Zheng Y K, et al.Assessment of chemical kinetic models on hypersonic flow heat transfer [J]. International Journal of Heat and Mass Transfer, 2017, 111: 356?366.[J].International Journal of Heat and Mass Transfer, 2017, 111:356-366
[16]Hao J, Wang J, Lee C.Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J]. Acta Astronautica, 2016, 126: 1?10.[J].Acta Astronautica, 2016, 126:1-10
[17]Niu Q, Yuan Z, Dong S, et al.Assessment of nonequilib-rium air-chemistry models on species formation in hyper-sonic shock layer [J]. International Journal of Heat and Mass Transfer, 2018, 127: 703?716.[J].International Journal of Heat and Mass Transfer, 2018, 127:703-716
[18] 赵法明.高超声速空气化学非平衡流与燃气喷流混合反应流场数值模拟研究[D]. 南京: 南京航空航天大学, 2019.
[19]Zhao F M.A numerical investigation for the mixed react-ing flowfield of the air chemical nonequilibrium flow and gaseous jet flow [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
[20] Casseau V.An Open-Source CFD Solver for Planetary Entry[D]. Glasgow: University of Strathclyde, 2017.
[21] 欧阳水吾,谢中强.高温非平衡空气绕流[M]. 北京: 国防工业出版社, 2001
[22]Ouyang S W, Xie Z Q.High temperature nonequilibrium air flow[M]. Beijing: National Defense Industry Press, 2001.
[23] Slotnick J P, Khodadoust A, Alonso J, et al.CFD Vision 2030 Study: A Path to Revolutionary Computational Aer-osciences: NF1676L-18332[R]. Hampton: Nasa Contrac-tor Report, 2014.
[24] 陈坚强, 袁先旭, 涂国华, 等.计算流体力学2035愿景[M]. 北京: 科学出版社, 2023.
[25]Chen J Q, Yuan X X, Tu G H, et al.Computational fluid dynamics 2035 vision in China[M]. Beijing: China Sci-ence Publishing & Media Ltd, 2023.
[26]Turányi T.Sensitivity analysis of complex kinetic systemsTools and applications[J].Journal of Mathematical Chem-istry, 1990, 5(3):203-
[27] Radhakrishnan K.Combustion Kinetics and Sensitivity Analysis Computations[G]//Numerical Approaches to Combustion Modeling. American Institute of Aeronautics and Astronautics, 1991: 83?128.
[28]苟小龙, 孙文廷, 陈正.燃烧数值模拟中的复杂化学反应机理处理方法[J].中国科学:物理学 力学 天文学, 2017, 47(7):62-
[29]Gou X L, Sun W T, Chen Z.Numerical methods for complicated chemical mechanism involved in combustion simulation[J].SCIENTIA SINICA Physica, Me-chanica & Astronomica, 2017, 47(7):62-
[30] Calello S III, Lu T, Zhao X.An Analytical Sensitivity Analysis Method for Turbulent Reacting Flows[C]// AIAA SciTech 2022 Forum. San Diego: AIAA, 2022.
[31]吴悠, 杨明, 杨斌.航空煤油反应动力学模型的发展现状和挑战[J].清华大学学报自然科学版, 2023, 63(4):521-
[32]Wu Y, Yang M, Yang B.Recent progress and challenges in combustion kinetic model of jet fuel[J].Journal of Tsinghua University (Science and Technology), 2023, 63(4):521-
[33]Liu C C, Lin K L, Wang Y R, et al.Multi-fidelity neural network for uncertainty quantification of chemical reaction models [J]. Combustion and Flame, 2023, 258: 113074.[J].Combustion and Flame, 2023, 258:113074-
[34]钱炜祺.用灵敏度法简化化学反应动力模型[J].空气动力学学报, 2004, 22(1):88-
[35]Qian W Q.Using sensitivity method to reduce the chemi-cal reaction kinetics model[J].Acta Aerodynamica Sinica, 2004, 22(1):88-
[36]Vajda S, Valko P, Turányi T.Principal component analy-sis of kinetic models[J].International Journal of Chemical Kinetics, 1985, 17(1):55-
[37]Turányi T, Bérces T, Vajda S.Reaction rate analysis of complex kinetic systems[J].International Journal of Chemical Kinetics, John Wiley & Sons, Ltd, 1989, 21(2):83-
[38] Jones W L, Cross A E.Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second: L-7984 [R]. Hampton: NASA Technical Note, 1972.
[39] Grantham W L.Flight results of a 25000-foot-per-second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance: NASA TN D-6062 [R]. Hampton: NASA Technical Note, 1970.
[40]郝佳傲, 王京盈, 高振勋, 等.高速高温流场电子能非平衡的数值模拟[J].航空学报, 2016, 37(11):3340-
[41]Hao J A, Wang J Y, Gao Z X, et al.Numerical simulation of electronic electron energy nonequilibrium in high speed and high temperature flowfields[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3340-
[42]艾邦成, 陈思员, 陈智, 等.关于高超声速飞行器新热障的认知与探讨[J].气体物理, 2023, 8(4):1-
[43]Ai B C, Chen S Y, Chen Z, et al.Cognition and discus-sion on new thermal barrier of hypersonic vehicles[J].PHYSICS OF GASES, 2023, 8(4):1-