空天结构保形设计: 从几何特征到能量疏导
收稿日期: 2025-01-21
修回日期: 2025-02-17
录用日期: 2025-02-28
网络出版日期: 2025-03-12
基金资助
国家重点研发计划(2022YFB3402200);国家自然科学基金重点基金(92271205)
Shape preserving design of aerospace structure: From geometric feature to energy channeling
Received date: 2025-01-21
Revised date: 2025-02-17
Accepted date: 2025-02-28
Online published: 2025-03-12
Supported by
National Basic Research Program of China(2022YFB3402200);National Natural Science Foundation of China(92271205)
新一代航空航天飞行器的快速发展对结构件超强承载、超高精度、极致轻量化等方面提出了更加严苛的要求。面对复杂空天载荷环境,如何在保证结构承载性能的前提下,通过结构设计有效保持关键区域几何和功能形状,是一个典型的保形设计难题。首先,系统综述了基于拓扑优化方法的保形设计相关研究进展,围绕保形思想的产生及其在空天结构设计中的应用展开讨论。随后,深入总结了近年来保形思想在静力学、动力学及多物理场耦合领域的应用,阐明了保形设计的核心在于结构内部能量的协调与疏导。在此基础上,进一步归纳了保形思想在航空航天复杂结构、光机系统结构以及多组件布局优化设计中的实践成果,强调保形思想在系统功能性设计中的重要价值。最后,展望了能量疏导保形思想在跨尺度结构设计、鲁棒性优化设计及复杂空天系统设计等领域的发展与应用前景,为未来相关研究与空天装备研发提供理论参考与技术支持。
朱继宏 , 张亦飞 , 张亚辉 , 侯杰 , 张卫红 . 空天结构保形设计: 从几何特征到能量疏导[J]. 航空学报, 2025 , 46(6) : 531833 -531833 . DOI: 10.7527/S1000-6893.2025.31833
The rapid development of next-generation aerospace vehicles has imposed more stringent requirements on structural components in terms of super-high load-bearing capacity, ultra-high precision, and extreme lightweight design. How to effectively maintain the geometry and functionality of key areas through structural design while ensuring the load-bearing performance under harsh aerospace load environments is a typical shape preserving design problem. Firstly, this paper systematically reviews the research progress related to shape preserving design based on topology optimization method, discussing the origins of the shape preserving concept and its applications in aerospace structural design. Subsequently, the recent applications of shape-preserving concepts in the fields of statics, dynamics, and multi-physics coupling are summarized in depth, clarifying that the core of shape preserving design lies in energy regulation and channeling within the structure. On this basis, the paper further summarizes the practical achievements of shape preserving methods in the optimization design of complex aerospace structures, optical-mechanical systems, and multi-component layouts, emphasizing the significant value of shape preserving ideas in functional system design. Finally, it explores the development and application prospects of shape preserving through energy channeling concepts in fields such as multi-scale structural design, robust optimization, and complex aerospace system design, providing theoretical references and technical support for future related research and equipment development.
1 | MICHELL A G M. The limits of economy of material in frame structures[J]. Philosophical Magazine, 1904(47): 589-597. |
2 | CHENG K T, OLHOFF N. An investigation concerning optimal design of solid elastic plates?[J]. International Journal of Solids and Structures, 1981, 17(3): 305-323. |
3 | BENDS?E M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method?[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
4 | BENDS?E M P. Optimal shape design as a material distribution problem?[J]. Structural Optimization, 1989, 1(4): 193-202. |
5 | BENDS?E M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9): 635-654. |
6 | STOLPE M, SVANBERG K. An alternative interpolation scheme for minimum compliance topology optimization?[J]. Structural and Multidisciplinary Optimization, 2001, 22(2): 116-124. |
7 | BENDS?E M P, SIGMUND O. Topology optimization[M]. Berlin: Springer Berlin Heidelberg, 2004: 9-12. |
8 | XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures, 1993, 49(5): 885-896. |
9 | XIA L, XIA Q, HUANG X, et al. Bi-directional evolutionary structural optimization on advanced structures and materials: A comprehensive review[J]. Archives of Computational Methods in Engineering, 2018, 25?(2): 437-478. |
10 | WANG M Y, WANG X, GUO D. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227-246. |
11 | VAN DIJK N P, MAUTE K, LANGELAAR M, et al. Level-set methods for structural topology optimization: a review?[J]. Structural and Multidisciplinary Optimization, 2013, 48(3): 437-472. |
12 | BOURDIN B, CHAMBOLLE A. Design-dependent loads in topology optimization[J]. ESAIM: Control, Optimization and Calculus of Variations, 2003, 9?(9): 19-48. |
13 | ZHANG W S, LI D, YUAN J, et al. A new three-dimensional topology optimization method based on moving morphable components (MMCs)?[J]. Computational Mechanics, 2017, 59(4): 647-665. |
14 | ZHOU Y, ZHANG W H, ZHU J H, et al. Feature-driven topology optimization method with signed distance function?[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 1-32. |
15 | ZHU J H, ZHANG W H, XIA L. Topology optimization in aircraft and aerospace structures design?[J]. Archives of Computational Methods in Engineering, 2016, 23(4): 595-622. |
16 | DUNNING P D, STANFORD B K, KIM H A. Coupled aerostructural topology optimization using a level set method for 3D aircraft wings[J]. Structural and Multidisciplinary Optimization, 2015, 51(5): 1113-1132. |
17 | 范文杰, 范子杰, 苏瑞意. 汽车车架结构多目标拓扑优化方法研究[J]. 中国机械工程, 2008, 12: 1505-1508. |
FAN W J, FAN Z J, SU R Y. Research on multi-objective topology optimization on bus chassis frame[J]. China Mechanical Engineering, 2008, 12: 1505-1508 (in Chinese). | |
18 | FIEDLER K, ROLFE B F, SOUZA T D, et al. Integrated shape and topology optimization-applications in automotive design and manufacturing[J]. SAE International Journal of Materials and Manufacturing, 2017, 10(3): 385-394. |
19 | BEGHINI L L, BEGHINI A, KATZ N, et al. Connecting architecture and engineering through structural topology optimization[J]. Engineering Structures, 2014, 59: 716-726. |
20 | DEATON J D, GRANDHI R V. A survey of structural and multidisciplinary continuum topology optimization: post 2000[J]. Structural and Multidisciplinary Optimization, 2014, 49(1): 1-38. |
21 | ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing: Status and challenges?[J]. Chinese Journal of Aeronautics, 2021, 34(1): 91-110. |
22 | ZHU J H, BECKERS P, ZHANG W H. On the multi-component layout design with inertial force[J]. Journal of Computational and Applied Mathematics, 2010, 234(7): 2222-2230. |
23 | DíAZ A, SIGMUND O. Checkerboard patterns in layout optimization?[J]. Structural optimization, 1995, 10(1): 40-45. |
24 | BOURDIN B. Filters in topology optimization[J]. International Journal for Numerical Methods in Engineering, 2001, 50(9): 2143-2158. |
25 | ZHOU M, SHYY Y K, THOMAS H L. Checkerboard and minimum member size control in topology optimization?[J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 152-158. |
26 | ZHANG W H, DUYSINX P. Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization?[J]. Computers & Structures, 2003, 81(22): 2173-2181. |
27 | BENDS?E M P. Optimization of Structural topology, shape, and material[M]. Berlin: Heidelberg: Springer, 1995: 109-112. |
28 | PETERSSON J, SIGMUND O. Slope constrained topology optimization[J]. International Journal for Numerical Methods in Engineering, 1998, 41(8): 1417-1434. |
29 | BERKE L, KHOT N S. Structural optimization using optimality criteria[C]?∥Computer Aided Optimal Design: Structural and Mechanical Systems. Berlin: Springer Berlin Heidelberg, 1987: 271-311. |
30 | ROZVANY G I N, ZHOU M. The COC algorithm, part Ⅰ: Cross-section optimization or sizing[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1): 281-308. |
31 | ZHOU M, ROZVANY G I N. The COC algorithm, Part Ⅱ: Topological, geometrical and generalized shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1): 309-336. |
32 | HASSANI B, HINTON E. Homogenization and structural topology optimization: Theory, practice and software[M]. London: Springer London, 2012: 72-99. |
33 | FLEURY C. CONLIN: An efficient dual optimizer based on convex approximation concepts?[J]. Structural Optimization, 1989, 1(2): 81-89. |
34 | BOGGS P T, TOLLE J W. Sequential quadratic programming[J]. Acta Numerica, 1995, 4: 1-51. |
35 | BRUYNEEL M, FLEURY C. Composite structures optimization using sequential convex programming[J]. Advances in Engineering Software, 2002, 33(7): 697-711. |
36 | SVANBERG K. The method of moving asymptotes—a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373. |
37 | ZILLOBER C. A globally convergent version of the method of moving asymptotes?[J]. Structural Optimization, 1993, 6(3): 166-174. |
38 | LIU J, GAYNOR A T, CHEN S, et al. Current and future trends in topology optimization for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2457-2483. |
39 | 朱继宏, 周涵, 王创, 等. 面向增材制造的拓扑优化技术发展现状与未来[J]. 航空制造技术, 2020, 63(10): 24-38. |
ZHU J H, ZHOU H, WANG C, et al. Status and future of topology optimization for additive manufacturing[J]. Aeronautical Manufacturing Technology, 2020, 63(10): 24-38 (in Chinese). | |
40 | 陈小前, 赵勇, 霍森林, 等. 多尺度结构拓扑优化设计方法综述[J]. 航空学报, 2023, 44(15): 528863. |
CHEN X Q, ZHAO Y, HUO S L, et al. A review of topology optimization design methods for multi-scale structures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528863 (in Chinese). | |
41 | 张卫红, 周涵, 李韶英, 等. 航天高性能薄壁构件的材料-结构一体化设计综述[J]. 航空学报, 2023, 44(9): 627428. |
ZHANG W H, ZHOU H, LI S Y, et al. Material structure integrated design for high-performance aerospace thin-walled component[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 627428 (in Chinese). | |
42 | 高强, 王健, 张严, 等. 拓扑优化方法及其在运载工程中的应用与展望[J]. 机械工程学报, 2024, 60(4): 369-390. |
GAO Q, WANG J, ZHANG Y, et al. Topology optimization approaches and its application and prospect in transportation engineering[J]. Journal of Mechanical Engineering, 2024, 60(4): 369-390 (in Chinese). | |
43 | ZHU J H, ZHANG W H. Integrated layout design of supports and structures[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199?(9): 557-569. |
44 | WU J, CLAUSEN A, SIGMUND O. Minimum compliance topology optimization of shell-infill composites for additive manufacturing?[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 358-375. |
45 | PICELLI R, VICENTE W M, PAVANELLO R, et al. Evolutionary topology optimization for natural frequency maximization problems considering acoustic-structure interaction[J]. Finite Elements in Analysis and Design, 2015, 106: 56-64. |
46 | ZARGHAM S, WARD T A, RAMLI R, et al. Topology optimization: a review for structural designs under vibration problems[J]. Structural and Multidisciplinary Optimization, 2016, 53(6): 1157-1177. |
47 | GAO T, ZHANG W H, ZHU J H, et al. Topology optimization of heat conduction problem involving design-dependent heat load effect[J]. Finite Elements in Analysis and Design, 2008, 44(14): 805-813. |
48 | YAN S, WANG F W, SIGMUND O. On the non-optimality of tree structures for heat conduction[J]. International Journal of Heat and Mass Transfer, 2018, 122: 660-680. |
49 | FANCELLO E A. Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions?[J]. Structural and Multidisciplinary Optimization, 2006, 32(3): 229-240. |
50 | 吴志学. 基于整体-局部技术的结构形状优化策略[J]. 计算力学学报, 2021, 38(5): 573-579. |
WU Z X. A strategy for structural shape optimization based on global-local technique[J]. Chinese Journal of Computational Mechanics, 2021, 38(5): 573-579 (in Chinese). | |
51 | BENDSOE M P, SIGMUND O. Topology optimization: theory, methods, and applications?[M]. Berlin: Springer Berlin Heidelberg, 2013: 1-8. |
52 | QIAN Z Y, ANANTHASURESH G K. Optimal embedding of rigid objects in the topology design of structures[J]. Mechanics Based Design of Structures and Machines, 2004, 32(2): 165-193. |
53 | CLAUSEN A, AAGE N, SIGMUND O. Topology optimization with flexible void area[J]. Structural and Multidisciplinary Optimization, 2014, 50(6): 927-943. |
54 | HA S H, GUEST J K. Optimizing inclusion shapes and patterns in periodic materials using discrete object projection?[J]. Structural and Multidisciplinary Optimization, 2014, 50(1): 65-80. |
55 | GUEST J K. Optimizing the layout of discrete objects in structures and materials: A projection-based topology optimization approach?[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 330-351. |
56 | LI Q, STEVEN G P, XIE Y M. Displacement minimization of thermoelastic structures by evolutionary thickness design[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 179(3): 361-378. |
57 | MAUTE K, ALLEN M. Conceptual design of aeroelastic structures by topology optimization[J]. Structural and Multidisciplinary Optimization, 2004, 27(1): 27-42. |
58 | SAKATA S, ASHIDA F. Perturbation-based successive approximate topology optimization for a displacement minimization problem[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 199(1): 148-157. |
59 | HUANG X, XIE Y M. Evolutionary topology optimization of continuum structures with an additional displacement constraint[J]. Structural and Multidisciplinary Optimization, 2010, 40(1): 409-416. |
60 | RONG J H, YI J H. A structural topological optimization method for multi-displacement constraints and any initial topology configuration[J]. Acta Mechanica Sinica, 2010, 26(5): 735-744. |
61 | QIAO H T, LIU S T. Topology optimization by minimizing the geometric average displacement[J]. Engineering Optimization, 2013, 45(1): 1-18. |
62 | ZUO Z H, XIE Y M. Evolutionary topology optimization of continuum structures with a global displacement control[J]. Computer-Aided Design, 2014, 56: 58-67. |
63 | ROZVANY G I N. Difficulties in truss topology optimization with stress, local buckling and system stability constraints[J]. Structural optimization, 1996, 11(3): 213-217. |
64 | OHSAKI M, IKEDA K. Stability and optimization of structures: generalized sensitivity analysis?[M]. New York: Springer New York, 2007: 101-114. |
65 | DUYSINX P, BENDS?E M P. Topology optimization of continuum structures with local stress constraints[J]. International Journal for Numerical Methods in Engineering, 1998, 43(8): 1453-1478. |
66 | CHENG G D, GUO X. ε-relaxed approach in structural topology optimization?[J]. Structural Optimization, 1997, 13(4): 258-266. |
67 | BRUGGI M. On an alternative approach to stress constraints relaxation in topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36(2): 125-141. |
68 | BRUGGI M, VENINI P. A mixed FEM approach to stress-constrained topology optimization?[J]. International Journal for Numerical Methods in Engineering, 2008, 73(12): 1693-1714. |
69 | XIA L, ZHANG L, XIA Q, et al. Stress-based topology optimization using bi-directional evolutionary structural optimization method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 333: 356-370. |
70 | YANG R J, CHEN C J. Stress-based topology optimization[J]. Structural Optimization, 1996, 12(2): 98-105. |
71 | DUYSINX P, SIGMUND O. New developments in handling stress constraints in optimal material distribution[J]. Engineering Materials Science, 1998, 98: 4906. |
72 | 隋允康, 彭细荣, 叶红玲. 应力约束全局化处理的连续体结构ICM拓扑优化方法[J]. 工程力学, 2006(7): 1-7. |
SUI Y K, PENG X R, YE H L. ICM Topology optimization of continuum structure with globalization of stress constraints by ICM method[J]. Engineering Mechanics, 2006(7): 1-7 (in Chinese). | |
73 | PARíS J, NAVARRINA F, COLOMINAS I, et al. Block aggregation of stress constraints in topology optimization of structures?[J]. Advances in Engineering Software, 2010, 41(3): 433-441. |
74 | LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization, 2010, 41(4): 605-620. |
75 | SURESH K, TAKALLOOZADEH M. Stress-constrained topology optimization: a topological level-set approach[J]. Structural and Multidisciplinary Optimization, 2013, 48(2): 295-309. |
76 | SENHORA F V, GIRALDO O, MENEZES I F M, et al. Topology optimization with local stress constraints: a stress aggregation-free approach[J]. Structural and Multidisciplinary Optimization, 2020, 62(4): 1639-1668. |
77 | FERRARI F, SIGMUND O. Revisiting topology optimization with buckling constraints[J]. Structural and Multidisciplinary Optimization, 2019, 59(5): 1401-1415. |
78 | SEYRANIAN A P, LUND E, OLHOFF N. Multiple eigenvalues in structural optimization problems[J]. Structural Optimization, 1994, 8(4): 207-227. |
79 | LEE K, AHN K, YOO J. A novel P-norm correction method for lightweight topology optimization under maximum stress constraints?[J]. Computers & Structures, 2016, 171: 18-30. |
80 | NEVES M M, SIGMUND O, BENDS?E M P. Topology optimization of periodic microstructures with a penalization of highly localized buckling modes?[J]. International Journal for Numerical Methods in Engineering, 2002, 54(6): 809-834. |
81 | BRUYNEEL M, COLSON B, REMOUCHAMPS A. Discussion on some convergence problems in buckling optimisation[J]. Structural and Multidisciplinary Optimization, 2008, 35(2): 181-186. |
82 | DUNNING P D, OVTCHINNIKOV E, SCOTT J, et al. Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver[J]. International Journal for Numerical Methods in Engineering, 2016, 107(12): 1029-1053. |
83 | SIGMUND O. On the design of compliant mechanisms using topology optimization[J]. Mechanics of Structures and Machines, 1997, 25(4): 493-524. |
84 | PEDERSEN C B W, BUHL T, SIGMUND O. Topology synthesis of large-displacement compliant mechanisms[J]. International Journal for Numerical Methods in Engineering, 2001, 50(12): 2683-2705. |
85 | WANG M Y, CHEN S, WANG X, et al. Design of multimaterial compliant mechanisms using level-set methods[J]. Journal of Mechanical Design, 2005, 127(5): 941-956. |
86 | STANFORD B, BERAN P. Optimal compliant flapping mechanism topologies with multiple load cases[J]. Journal of Mechanical Design, 2012, 134: 051007-051017. |
87 | XIA S H, WANG N F, CHEN B C, et al. Topology optimization of compliant mechanisms including links, supports and material distribution[J]. Computers & Structures, 2024, 291: 107210. |
88 | ZHU B L, ZHANG X M. A new level set method for topology optimization of distributed compliant mechanisms[J]. International Journal for Numerical Methods in Engineering, 2012, 91(8): 843-871. |
89 | FRECKER M, ANANTHASURESH G, NISHIWAKI S, et al. Topological synthesis of compliant mechanisms using multi-criteria optimization[J]. Journal of Mechanical Design, 1997, 119(2): 238-245. |
90 | NISHIWAKI S, MIN S, YOO J, et al. Optimal structural design considering flexibility?[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(34): 4457-4504. |
91 | ZHU B L, ZHANG X M, FATIKOW S. A multi-objective method of hinge-free compliant mechanism optimization?[J]. Structural and Multidisciplinary Optimization, 2014, 49(3): 431-440. |
92 | DU Y X, CHEN L P, LUO Z. Topology synthesis of geometrically nonlinear compliant mechanisms using meshless methods?[J]. Acta Mechanica Solida Sinica, 2008, 21(1): 51-61. |
93 | LIU L Y, XING J, YANG Q W, et al. Design of large-displacement compliant mechanisms by topology optimization incorporating modified additive hyper-elasticity technique?[J]. Mathematical Problems in Engineering, 2017(1): 4679746-11. |
94 | WANG M Y. Mechanical and geometric advantages in compliant mechanism optimization?[J]. Frontiers of Mechanical Engineering in China, 2009, 4(3): 229-241. |
95 | LAU G K, DU H, LIM M K. Use of functional specifications as objective functions in topological optimization of compliant mechanism[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(34): 4421-4433. |
96 | ZHU B L, ZHANG X M, ZHANG H C, et al. Design of compliant mechanisms using continuum topology optimization: A review?[J]. Mechanism and Machine Theory, 2020, 143: 103622. |
97 | JUN NAM S, JANG G W, KIM Y Y. The spring-connected rigid block model based automatic synthesis of planar linkage mechanisms: Numerical issues and remedies[J]. Journal of Mechanical Design, 2012, 134(5): 051002. |
98 | KIM S I, KIM Y Y. Topology optimization of planar linkage mechanisms[J]. International Journal for Numerical Methods in Engineering, 2014, 98(4): 265-286. |
99 | 牛飞, 王博, 程耿东. 基于拓扑优化技术的集中力扩散结构设计[J]. 力学学报, 2012, 44(3): 528-536. |
NIU F, WANG B, CHENG G D. Optimum topology design of structural part force concentration force transmission[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 528-536 (in Chinese). | |
100 | NIU C, ZHANG W H, GAO T. Topology optimization of continuum structures for the uniformity of contact pressures[J]. Structural and Multidisciplinary Optimization, 2019, 60(1): 185-210. |
101 | 吴曼乔, 朱继宏, 杨开科, 等. 面向压电智能结构精确变形的协同优化设计方法[J]. 力学学报, 2017, 49(2): 380-389. |
WU M Q, ZHU J H, YANG K K, et al. Integrated layout and topology optimization design of piezoelectric smart structure in accurate shape control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 380-389 (in Chinese). | |
102 | TSAI T D, CHENG C C. Structural design for desired eigenfrequencies and mode shapes using topology optimization[J]. Structural and Multidisciplinary Optimization, 2013, 47(5): 673-686. |
103 | ZHU J H, HOU J, ZHANG W H, et al. Structural topology optimization with constraints on multi-fastener joint loads[J]. Structural and Multidisciplinary Optimization, 2014, 50(4): 561-571. |
104 | JAMES K A, WAISMAN H. Layout design of a bi-stable cardiovascular stent using topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 869-890. |
105 | CAO Y F, ZHU J H, GUO W J, et al. Structure topology optimization method for output loads precise control[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2017, 48: 014606. |
106 | GAO T, QIU L B, ZHANG W H. Topology optimization of continuum structures subjected to the variance constraint of reaction forces?[J]. Structural and Multidisciplinary Optimization, 2017, 56(4): 755-765. |
107 | LIU H, ZHANG W, GAO T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations?[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1321-1333. |
108 | PARK K S, CHANG S Y, YOUN S K. Topology optimization of the primary mirror of a multi-spectral camera[J]. Structural and Multidisciplinary Optimization, 2003, 25(1): 46-53. |
109 | DüHRING M B, JENSEN J S, SIGMUND O. Acoustic design by topology optimization[J]. Journal of Sound and Vibration, 2008, 317(3): 557-575. |
110 | CHOI J S, YOO J. Simultaneous structural topology optimization of electromagnetic sources and ferromagnetic materials[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(27): 2111-2121. |
111 | 左孔天, 陈立平, 张云清, 等. 用拓扑优化方法进行热传导散热体的结构优化设计[J]. 机械工程学报, 2005, 41(4): 13-16. |
ZUO K T, CHEN L P, ZHANG Y Q, et al. Structural optimal design of heat conductive body with topology optimization method[J]. Journal of Mechanical Engineering, 2005, 41(4): 13-16 (in Chinese). | |
112 | ZHU J H, ZHANG W H, BECKERS P. Integrated layout design of multi-component system[J]. International Journal for Numerical Methods in Engineering, 2009, 78(6): 631-651. |
113 | 刘涛. 动载荷下组件结构系统的整体优化设计[D]. 西安: 西北工业大学, 2020. |
LIU T. Integrated layout and topology optimization design of multi-component systems under dynamic excitations?[D]. Xi’ an: Northwestern Polytechnical University, 2020 (in Chinese). | |
114 | LING Z, RONGLU X, YI W, et al. Topology optimization of constrained layer damping on plates using Method of Moving Asymptote (MMA) approach[J]. Shock and Vibration, 2011, 18(1-2): 830793. |
115 | KIM S Y, MECHEFSKE C K, KIM I Y. Optimal damping layout in a shell structure using topology optimization[J]. Journal of Sound and Vibration, 2013, 332(12): 2873-2883. |
116 | LIU H, ZHANG W H, GAO T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations?[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1321-1333. |
117 | TAKEZAWA A, DAIFUKU M, NAKANO Y, et al. Topology optimization of damping material for reducing resonance response based on complex dynamic compliance?[J]. Journal of Sound and Vibration, 2016, 365: 230-243. |
118 | ZHANG J, CHEN Y, ZHAI J, et al. Topological optimization design on constrained layer damping treatment for vibration suppression of aircraft panel via improved Evolutionary Structural Optimization[J]. Aerospace Science and Technology, 2021, 112: 106619. |
119 | MENG F W, ZHU J H, HOU J, et al. Prediction for antiresonant and extremum response frequencies of undamped structures?[J]. AIAA Journal, 2023, 61(9): 4126-4139. |
120 | MENG F W, MENG L, WANG J T, et al. Topology optimization for minimum dynamic compliance using an antiresonant frequency constraint[J]. Structural and Multidisciplinary Optimization, 2024, 67(9): 161. |
121 | SUN C, WANG W, TIAN X W, et al. Thermal design of composite cold plates by topology optimization[J]. International Journal of Mechanical Sciences, 2023, 259: 108594. |
122 | DBOUK T. A review about the engineering design of optimal heat transfer systems using topology optimization[J]. Applied Thermal Engineering, 2017, 112: 841-854. |
123 | SHA W, XIAO M, WANG Y H, et al. Topology optimization methods for thermal metamaterials: A review[J]. International Journal of Heat and Mass Transfer, 2024, 227: 125588. |
124 | DE KRUIJF N, ZHOU S, LI Q, et al. Topological design of structures and composite materials with multi-objectives[J]. International Journal of Solids and Structures, 2007, 44(22): 7092-7109. |
125 | LONG K, WANG X, GU X G. Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously[J]. Acta Mechanica Sinica, 2018, 34(2): 315-326. |
126 | YANG Q, MENG S H, XIE W H, et al. Effective mitigation of the thermal short and expansion mismatch effects of an integrated thermal protection system through topology optimization[J]. Composites Part B: Engineering, 2017, 118: 149-157. |
127 | YANG Q, GAO B, XU Z Y, et al. Topology optimizations for integrated thermal protection systems considering thermo-mechanical constraints[J]. Applied Thermal Engineering, 2019, 150: 995-1001. |
128 | 李帅, 张永存, 刘书田. 考虑瞬态温度和应力约束的承载隔热多功能结构拓扑优化[J]. 力学学报, 2023, 55(6): 1288-1307. |
LI S, ZHANG Y C, LIU S T. Topology optimization method for integrated thermal protection structure considering transient temperature and stress constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1288-1307 (in Chinese). | |
129 | JOO Y, LEE I, KIM S J. Efficient three-dimensional topology optimization of heat sinks in natural convection using the shape-dependent convection model[J]. International Journal of Heat and Mass Transfer, 2018, 127: 32-40. |
130 | LV Y, LIU S. Topology optimization and heat dissipation performance analysis of a micro-channel heat sink[J]. Meccanica, 2018, 53(15): 3693-3708. |
131 | WU S H, ZHANG Y C, LIU S T. Transient thermal dissipation efficiency based method for topology optimization of transient heat conduction structures[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121004. |
132 | TAKEZAWA A, KOBASHI M. Design methodology for porous composites with tunable thermal expansion produced by multi-material topology optimization and additive manufacturing[J]. Composites Part B: Engineering, 2017, 131: 21-29. |
133 | SHA W, HU R, XIAO M, et al. Topology-optimized thermal metamaterials traversing full-parameter anisotropic space?[J]. NPJ Computational Materials, 2022, 8(1): 1-10. |
134 | ZHOU H, ZHU J H, WANG C, et al. Optimization design for 3D-braided composite structure under thermo-mechanical load[J]. Structural and Multidisciplinary Optimization, 2023, 66(8): 193. |
135 | FAWAZ A, HUA Y, LE Corre S, et al. Topology optimization of heat exchangers: A review[J]. Energy, 2022, 252: 124053. |
136 | JIANG T, CHIREHDAST M. A systems approach to structural topology optimization: Designing optimal connections?[J]. Journal of Mechanical Design, 1997, 119(1): 40-47. |
137 | 朱继宏, 张卫红. 多组件系统的综合布局优化设计[C]∥中国力学学会学术大会论文文集. 郑州: 中国力学学会, 2009: 1, 312. |
ZHU J H, ZHANG W H. Integrated comprehensive layout design of multi-component system[C]∥Conference of the Chinese Society of Theoretical and Applied Mechanics. Zhengzhou: Chinese Society of Theoretical and Applied Mechanics, 2009: 1, 312(in Chinese). | |
138 | XIA L, ZHU J H, ZHANG W H, et al. Integrated optimal design of complex multi-component system in three-dimension?[J]. Materials Science Forum, 2012, 697-698: 608-613. |
139 | ZHANG Q, ZHANG W H, ZHU J H, et al. Layout optimization of multi-component structures under static loads and random excitations?[J]. Engineering Structures, 2012, 43: 120-128. |
140 | 朱继宏, 高欢欢, 张卫红, 等. 航天器整体式多组件结构拓扑优化设计与应用[J]. 航空制造技术, 2014(14): 26-29. |
ZHU J H, GAO H H, ZHANG W H, et al. Design and applications of topology optimization techniques in aerospace multi-component structures[J]. Aeronautical Manufacturing Technology, 2014(14): 26-29 (in Chinese). | |
141 | 张桥, 张卫红. 有限包络圆族的快速生成方法及其在二维布局优化中的应用[J]. 计算机辅助设计与图形学学报, 2009, 21(5): 617-625. |
ZHANG Q, ZHANG W H. Efficient construction algorithms of finite circles and their applications to 2D layout optimization[J]. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(5): 617-625 (in Chinese). | |
142 | 张维声, 孙国, 郭旭, 等. 基于水平集描述的结构拓扑与构件布局联合优化新方法[J]. 工程力学, 2013, 30(7): 22-27. |
ZHANG W S, SUN G, GUO X, et al. A level set-based approach for simultaneous optimization of the structural topology and the layout of embedding structural components[J]. Engineering Mechanics, 2013, 30(7): 22-27 (in Chinese). | |
143 | ZHANG W S, ZHONG W L, GUO X. Explicit layout control in optimal design of structural systems with multiple embedding components?[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 290-313. |
144 | GAO H H, ZHU J H, ZHANG W H, et al. An improved adaptive constraint aggregation for integrated layout and topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 387-408. |
145 | 朱继宏, 郭文杰, 张卫红, 等. 多组件结构系统布局拓扑优化中处理组件干涉约束的惩罚函数方法[J]. 航空学报, 2016, 37(12): 3721-3733. |
ZHU J H, GUO W J, ZHANG W H, et al. A penalty function based method for dealing with overlap constraints in integrated layout and topology optimization design of multi-component systems?[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3721-3733 (in Chinese). | |
146 | ZHU J H, GAO H H, ZHANG W H, et al. A multi-point constraints based integrated layout and topology optimization design of multi-component systems[J]. Structural and Multidisciplinary Optimization, 2015, 51(2): 397-407. |
147 | 张卫红, 郭文杰, 朱继宏. 部件级多组件结构系统的整体式拓扑布局优化[J]. 航空学报, 2015, 36(8): 2662-2669. |
ZHANG W H, GUO W J, ZHU J H, et al. Integrated layout and topology optimization design of multi-component systems with assembly units[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2662-2669 (in Chinese). | |
148 | ZHU J H, GUO W J, ZHANG W H, et al. Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems?[J]. Structural and Multidisciplinary Optimization, 2017, 56(1): 21-45. |
149 | ZHU J H, LI Y, ZHANG W H. Topology optimization with shape preserving design[C]∥The 5th International Conference on Computational Methods. Cambridge: University of Oxford, 2014. |
150 | ZHU J H, LI Y, ZHANG W H, et al. Shape preserving design with structural topology optimization[J]. Structural and Multidisciplinary Optimization, 2016, 53(4): 893-906. |
151 | 李昱. 结构保形拓扑优化设计理论与方法研究[D]. 西安: 西北工业大学, 2020. |
LI Y. Shape preserving design theory and method with structural topology optimization[D]. Xi’an: Northwestern Polytechnical University, 2020 (in Chinese). | |
152 | 朱继宏, 李昱, 张卫红, 等. 考虑多点保形的结构拓扑优化设计方法[J]. 航空学报, 2015, 36(2): 518-526. |
ZHU J H, LI Y, ZHANG W H, et al. Structure topology optimization with multi-point shape-preserving constrain[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 518-526 (in Chinese). | |
153 | YOON K H, HEO S P, SONG K N, et al. Dynamic impact analysis of the grid structure using multi-point constraint (MPC) equation under the lateral impact load[J]. Computers & Structures, 2004, 82(23): 2221-2228. |
154 | AINSWORTH M. Essential boundary conditions and multi-point constraints in finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(48): 6323-6339. |
155 | JENDELE L, CERVENKA J. On the solution of multi-point constraints-Application to FE analysis of reinforced concrete structures[J]. Computers & Structures, 2009, 87(15-16): 970-980. |
156 | 朱继宏, 王林, 李昱, 等. 基于多点自由度约束的方向性保形拓扑优化设计方法[J]. 应用数学和力学, 2016, 37(10): 999-1012. |
ZHU J H, WANG L, LI Y, et al. A directional shape-preserving topology optimization method with multi-point constraints[J]. Applied Mathematics and Mechanics, 2016, 37(10): 999-1012 (in Chinese). | |
157 | LI Y, ZHU J H, ZHANG W H, et al. Structural topology optimization for directional deformation behavior design with the orthotropic artificial weak element method[J]. Structural and Multidisciplinary Optimization, 2018, 57(3): 1251-1266. |
158 | LI Y, ZHU J H, WANG F W, et al. Shape preserving design of geometrically nonlinear structures using topology optimization[J]. Structural and Multidisciplinary Optimization, 2019, 59(4): 1033-1051. |
159 | BUHL T, PEDERSEN C B W, SIGMUND O. Stiffness design of geometrically nonlinear structures using topology optimization[J]. Structural and Multidisciplinary Optimization, 2000, 19(2): 93-104. |
160 | LUO Y, WANG M Y, KANG Z. Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 286: 422-441. |
161 | WALLIN M, IVARSSON N, TORTORELLI D. Stiffness optimization of non-linear elastic structures?[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 330: 292-307. |
162 | WANG F W, LAZAROV B S, SIGMUND O, et al. Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 276: 453-472. |
163 | MA Z D, KIKUCHI N, HAGIWARA I. Structural topology and shape optimization for a frequency response problem[J]. Computational Mechanics, 1993, 13(3): 157-174. |
164 | PEDERSEN N L. Maximization of eigenvalues using topology optimization?[J]. Structural and Multidisciplinary Optimization, 2000, 20(1): 2-11. |
165 | DU J B, OLHOFF N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural and Multidisciplinary Optimization, 2007, 34(2): 91-110. |
166 | OLHOFF N, DU J B. Structural topology optimization with respect to eigenfrequencies of vibration[M]∥Topology Optimization in Structural and Continuum Mechanics. Vienna: Springer, 2014: 275-297. |
167 | ANDREASSEN E, FERRARI F, SIGMUND O, et al. Frequency response as a surrogate eigenvalue problem in topology optimization[J]. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1214-1229. |
168 | YANG X W, LI Y M. Structural topology optimization on dynamic compliance at resonance frequency in thermal environments?[J]. Structural and Multidisciplinary Optimization, 2014, 49(1): 81-91. |
169 | FANG Z P, ZHENG L. Topology optimization for minimizing the resonant response of plates with constrained layer damping treatment[J]. Shock and Vibration, 2015, 2015(1): 376854. |
170 | NIU B, HE X M, SHAN Y, et al. On objective functions of minimizing the vibration response of continuum structures subjected to external harmonic excitation[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2291-2307. |
171 | CASTRO M S, SILVA O M, LENZI A, et al. Shape preserving design of vibrating structures using topology optimization[J]. Structural and Multidisciplinary Optimization, 2018, 58(3): 1109-1119. |
172 | OLHOFF N, DU J B. Introductory notes on topological design optimization of vibrating continuum structures[M]?∥Topology Optimization in Structural and Continuum Mechanics. Vienna: Springer, 2014: 259-273. |
173 | WANG Y L, ZHU J H, LI Y, et al. Shape preserving design with topology optimization for structures under harmonic resonance responses[J]. Structural and Multidisciplinary Optimization, 2022, 65(5): 145. |
174 | SILVA O M, NEVES M M, LENZI A. A critical analysis of using the dynamic compliance as objective function in topology optimization of one-material structures considering steady-state forced vibration problems[J]. Journal of Sound and Vibration, 2019, 444: 1-20. |
175 | SILVA O M, NEVES M M, LENZI A. On the use of active and reactive input power in topology optimization of one-material structures considering steady-state forced vibration problems[J]. Journal of Sound and Vibration, 2020, 464: 114989. |
176 | SILVA O M, VALENTINI F, CARDOSO E L. Shape and position preserving design of vibrating structures by controlling local energies through topology optimization[J]. Journal of Sound and Vibration, 2021, 515: 116478. |
177 | NOISEUX D U. Measurement of power flow in uniform beams and plates[J]. The Journal of the Acoustical Society of America, 1970, 47: 238-247. |
178 | 严济宽. 振动功率流的一般表达式及其测量方法[J]. 噪声与振动控制, 1987(1): 24-29. |
YAN J K. General expression of vibration power flow and its measurement method[J]. Noise and Vibration Control, 1987(1): 24-29 (in Chinese). | |
179 | 李凯. 基于声强可视化的船舶结构声振能量特性研究[D]. 大连: 大连理工大学, 2011. |
LI K. Study on vibro-acoustic energy flow of ship structure by vibration intensity visualization technique[D]. Dalian: Dalian University of Technology, 2011 (in Chinese). | |
180 | ZHU J H, LI Y, WANG F W, et al. Shape preserving design of thermo-elastic structures considering geometrical nonlinearity[J]. Structural and Multidisciplinary Optimization, 2020, 61(5): 1787-1804. |
181 | SIGMUND O. Design of multiphysics actuators using topology optimization-Part I: One-material structures[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49): 6577-6604. |
182 | BRUNS T E, SIGMUND O. Toward the topology design of mechanisms that exhibit snap-through behavior[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(36): 3973-4000. |
183 | CHUNG H, AMIR O, KIM H A. Level-set topology optimization considering nonlinear thermoelasticity?[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112735. |
184 | VON HOERNER S. Design of large steerable antennas[J]. The Astronomical Journal, 1967, 72: 35. |
185 | 陈树勋, 叶尚辉. 天线结构的严格保型优化设计[J]. 固体力学学报, 1986(3): 189-197. |
CHEN S X, YE S H. The accurate homologous design and optimization of antenna structure[J]. Chinese Journal of Solid Mechanics, 1986(3): 189-197 (in Chinese). | |
186 | 段宝岩. 天线结构分析、优化与测量[M]. 西安: 西安电子科技大学出版社, 2017: 260-303. |
DUAN B Y. Antenna structure analysis, optimization and measurement[M]. Xi’an: Xidian University Press, 2017: 260-303 (in Chinese). | |
187 | FENG S F, WANG C S, DUAN B Y, et al. Design of tipping structure for 110 m high-precision radio telescope[J]. Acta Astronautica, 2017, 141: 50-56. |
188 | 冯树飞. 大型全可动反射面天线结构保型及创新设计研究[D]. 西安: 西安电子科技大学, 2019. |
FENG S F. Study on structural homologous and innovation design for large steerable antennas[D]. Xi’an: Xidian University, 2019 (in Chinese). | |
189 | SHINTANI K, KAWAMURA H, KIMURA T, et al. Multimaterial homologous topology optimization of large telescope structure under multiple elevation conditions[J]. Structural and Multidisciplinary Optimization, 2024, 67(4): 64. |
190 | 冯树飞, 班友, 连培园, 等. 大型全可动射电望远镜结构设计进展与挑战[J]. 机械工程学报, 2024, 60(13): 330-344. |
FENG S F, BAN Y, LIAN P Y, et al. Progress and challenges in the structural design of large fully-steerable radio telescopes[J]. Journal of Mechanical Engineering, 2024, 60(13): 330-344 (in Chinese). | |
191 | CHEN F, ZHU J H, DU X X, et al. Shape preserving topology optimization for structural radar cross section control[J]. Chinese Journal of Aeronautics, 2022, 35(6): 198-210. |
192 | 王天枢, 林鹏, 董芳, 等. 空间激光通信技术发展现状及展望[J]. 中国工程科学, 2020, 22(3): 92-99. |
WANG T S, LIN P, DONG F, et al. Progress and prospect of space laser communication technology[J]. Strategic Study of CAE, 2020, 22(3): 92-99 (in Chinese). | |
193 | 刘书田, 胡瑞, 周平, 等. 基于筋板式基结构的大口径空间反射镜构型设计的拓扑优化方法[J]. 光学精密工程, 2013, 21(7): 1803-1810. |
LIU S T, H R, ZHOU P, et al. Topologic optimization for configuration design of web-skin-type ground structure based large-aperture space mirror[J]. Optics and Precision Engineering, 2013, 21(7): 1803-1810 (in Chinese). | |
194 | CHEN Y C, HUANG B K, YOU Z T, et al. Optimization of lightweight structure and supporting bipod flexure for a space mirror[J]. Applied Optics, 2016, 55(36): 10382-10391. |
195 | HU R, CHEN W J, LI Q H, et al. Design optimization method for additive manufacturing of the primary mirror of a large-aperture space telescope[J]. Journal of Aerospace Engineering, 2017, 30(3): 04016093. |
196 | LIU S T, HU R, LI Q H, et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope?[J]. Applied Optics, 2014, 53(35): 8318-8325. |
197 | KOPPEN S, VAN DER KOLK M, VAN KEMPEN F C M, et al. Topology optimization of multicomponent optomechanical systems for improved optical performance[J]. Structural and Multidisciplinary Optimization, 2018, 58(3): 885-901. |
198 | 王伟, 王祖铧, 顾原冰, 等. 变形双反射面天线的机电耦合分析方法[J]. 中国科学:物理学 力学 天文学, 2024, 54(1): 102-111. |
WANG W, WANG Z H, GU Y B, et al. Electromechanical coupling analysis method of deformed dual-reflector antennas[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2024, 54(1): 102-111 (in Chinese). | |
199 | LI Y, XIN X M, KIKUCHI N, et al. Optimal shape and location of piezoelectric materials for topology optimization of flextensional actuators[C]∥Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. 2001: 1085-1090. |
200 | LI Q, STEVEN G P, XIE Y M. Evolutionary structural optimization for connection topology design of multi‐component systems?[J]. Engineering Computations, 2001, 18(3/4): 460-479. |
201 | MA Z D, KIKUCHI N, PIERRE C, et al. Multidomain topology optimization for structural and material designs[J]. Journal of Applied Mechanics, 2006, 73(4): 565-573. |
202 | SHAPIRO V. Theory of R-functions and applications: a primer[D]. Cornell: Cornell University, 1991. |
203 | KANG Z, WANG Y Q. Integrated topology optimization with embedded movable holes based on combined description by material density and level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 255: 1-13. |
204 | XIA L, ZHU J H, ZHANG W H, et al. An implicit model for the integrated optimization of component layout and structure topology[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 257: 87-102. |
205 | ZHU J H, ZHANG W H, BECKERS P, et al. Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique[J]. Structural and Multidisciplinary Optimization, 2008, 36(1): 29-41. |
206 | ZHANG W H, ZHANG Q. Finite-circle method for component approximation and packing design optimization[J]. Engineering Optimization, 2009, 41(10): 971-987. |
207 | WANG Y Q, LUO Z, ZHANG X P, et al. Topological design of compliant smart structures with embedded movable actuators[J]. Smart Materials and Structures, 2014, 23(4): 045024. |
208 | KANG Z, WANG Y G, WANG Y Q. Structural topology optimization with minimum distance control of multiphase embedded components by level set method?[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 299-318. |
209 | 郭文杰, 朱继宏, 罗利龙, 等. 考虑组件保形约束的多组件结构系统布局优化[J]. 航空学报, 2022, 43(5): 284-298. |
GUO W J, ZHU J H, LUO L L, et al. Integrated layout and topology optimization of multi-component structural systems considering component shape-preserving design constraints[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 284-298 (in Chinese). | |
210 | 张卫红, 章胜冬, 高彤. 薄壁结构的加筋布局优化设计[J]. 航空学报, 2009, 30(11): 2126-2131. |
ZHANG W H, ZHANG S D, GAO T. Stiffener layout optimization of thin walled structures?[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11): 2126-2131 (in Chinese). | |
211 | 刘磊, 刘杨, 刘书田. 基于拓扑优化的曲面薄壁结构加筋布局与高度协同优化设计方法[J]. 计算力学学报, 2024: 1-7(优先出版). |
LIU L, LIU C, LIU S T. Topology optimization based method for simultaneous optimal design of stiffener’s and heights of curved thin-wall stiffened structures[J]. Chinese Journal of Computational Mechanics, 2024: 1-7 (in press) (in Chinese). | |
212 | LI Y, GAO T, ZHOU Q Y, et al. Layout design of thin-walled structures with lattices and stiffeners using multi-material topology optimization[J]. Chinese Journal of Aeronautics, 2023, 36(4): 496-509. |
213 | 王正焕. 考虑局部保形约束的薄壁加筋结构拓扑优化方法[D]. 大连: 大连理工大学, 2021. |
WANG Z H. Topological optimization of thin-walled stiffened structure considering local shape preserving constraint[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
214 | XIA L, BREITKOPF P. Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278: 524-542. |
215 | WANG Y G, KANG Z. Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 340-364. |
216 | WANG C, ZHU J H, ZHANG W H, et al. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures[J]. Structural and Multidisciplinary Optimization, 2018, 58(1): 35-50. |
217 | WANG C, GU X J, ZHU J H, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2020, 61(3): 869-894. |
218 | YAN J, HU W B, WANG Z H, et al. Size effect of lattice material and minimum weight design[J]. Acta Mechanica Sinica, 2014, 30(2): 191-197. |
219 | ZHOU H, ZHU J H, WANG C, et al. Hierarchical structure optimization with parameterized lattice and multiscale finite element method[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 39. |
220 | NAKAZAWA Y, KOGISO N, YAMADA T, et al. Robust topology optimization of thin plate structure under concentrated load with uncertain load position[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2016, 10(4): 0057-0057. |
221 | 占金青, 杨新峰, 周程灵, 等. 考虑材料不确定性的多自由度柔顺机构稳健性拓扑优化设计[J/OL]. 计算机辅助设计与图形学学报, (2024-08-21)[2025-02-28]. . |
ZHAN J Q, YANG X F, ZHOU C L, et al. Robust topology optimization design of compliant mechanisms with multiple degrees of freedom considering material uncertainties[J]. Journal of Computer-Aided Design & Computer Graphics, (2024-08-21 [2025-02-28]. (in Chinese). | |
222 | JANSEN M, LOMBAERT G, SCHEVENELS M. Robust topology optimization of structures with imperfect geometry based on geometric nonlinear analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 452-467. |
223 | BAI S, KANG Z. Robust topology optimization for structures under bounded random loads and material uncertainties[J]. Computers & Structures, 2021, 252: 106569. |
224 | 杜剑明, 杜宗亮, 刘畅, 等. 基于结构可置信性鲁棒优化算法的离散优化问题研究[J]. 计算力学学报, 2021, 38(4): 538-548. |
DU J M, DU Z L, LIU C, et al. A study on discrete optimization problem based on confidence structural robust optimization algorithm[J]. Chinese Journal of Computational Mechanics, 2021, 38(4): 538-548 (in Chinese). | |
225 | YANG B, CHENG C Z, WANG X, et al. Robust reliability-based topology optimization for stress-constrained continuum structures using polynomial chaos expansion[J]. Structural and Multidisciplinary Optimization, 2023, 66(4): 88. |
226 | THILLAITHEVAN D, BRUCE P, SANTER M. Robust multiscale optimization accounting for spatially-varying material uncertainties[J]. Structural and Multidisciplinary Optimization, 2022, 65(2): 40. |
/
〈 |
|
〉 |