耐极端烧蚀环境C/C复合材料研究进展
收稿日期: 2025-03-03
修回日期: 2025-03-05
录用日期: 2025-03-10
网络出版日期: 2025-03-12
基金资助
国家自然科学基金(52293370);国家科技重大专项(J2022-Ⅵ-0011-0042)
Research progress of C/C composites resistant to extreme ablation environments
Received date: 2025-03-03
Revised date: 2025-03-05
Accepted date: 2025-03-10
Online published: 2025-03-12
Supported by
National Natural Science Foundation of China(52293370);National Science and Technology Major Project (J2022-Ⅵ-0011-0042)
C/C复合材料是空天飞行器热端部件关键的热结构材料,但高温易氧化烧蚀特性限制了其在极端环境下的应用。因此,如何提高C/C复合材料的抗烧蚀性能尤为重要。系统综述了近年来国内外抗烧蚀C/C复合材料的研究进展,围绕基体改性、涂层防护和基体改性-涂层一体化3个方面展开阐述。在基体改性方面,基于组元特性差异将材料分为单相陶瓷、复相陶瓷、多组元及高熵陶瓷改性C/C复合材料,揭示了陶瓷氧化产物的阻氧抗烧蚀机制。涂层技术重点剖析了单层涂层、多层梯度复合涂层、微/纳结构增韧涂层及嵌入结构界面涂层的设计原理与烧蚀行为,阐明了界面匹配优化对于缓解涂层热失配和抗烧蚀性能的作用机理。最后,面向极端烧蚀环境应用需求展望了C/C复合材料在氧化烧蚀机理分析、复合材料的结构和组分优化、构件的功能设计及高效低成本制备工艺等方面的发展方向。
曾耀莹 , 王润宁 , 侯佳琪 , 张雨雷 , 张佳平 , 李贺军 . 耐极端烧蚀环境C/C复合材料研究进展[J]. 航空学报, 2025 , 46(6) : 531927 -531927 . DOI: 10.7527/S1000-6893.2024.31927
C/C composites are key thermal structural materials for hot-end components of aerospace vehicles. However, their susceptibility to oxidation and ablation at high temperatures limits their applications in extreme environments. Therefore, it is particularly important to improve the ablation resistance of C/C composites. The research progress of anti-ablation C/C composites at home and abroad in recent years are systematically reviewed, focusing on 3 aspects: matrix modification, coating protection, and matrix-coating integration. In terms of matrix modification, based on the differences in component characteristics, it is divided into single-phase ceramics, multiphase ceramics, multi-component and high-entropy ceramics modified C/C composites, revealing oxygen blocking and anti-ablation mechanisms of oxidation products of ceramics. The coating technology focuses on analyzing the design principles and ablation behaviors of single-layer coatings, multi-layer composite coatings with gradient structure, micro/nano structure toughened coatings, and coatings with embedded structure interface, clarifying the mechanisms of interface matching optimization in alleviating thermal mismatch of coatings and ablation behaviors. Finally, according to the application requirements for extreme ablation environments, the future development directions for C/C composites are proposed, including oxidation and ablation mechanism analysis, optimization of structure and composition of composite materials, functional design of components, and cost-effective fabrication processes.
1 | PADTURE N P. Advanced structural ceramics in aerospace propulsion?[J]. Nature Materials, 2016, 15(8): 804-809. |
2 | ZHANG S Y, ZHANG Y L, LI A J, et al. Carbon composites[M]∥ YI X S, DU S Y, ZHANG L T. Composite Materials Engineering, Volume 2: Different Types of Composite Materials. Singapore: Springer Singapore, 2018: 531-617. |
3 | 王富强, 张力, 陈建. 大型固体火箭发动机喷管喉衬技术研究进展[J]. 宇航材料工艺, 2020, 50(6): 8-14. |
WANG F Q, ZHANG L, CHEN J. Overview of large solid rocket motor throat development[J]. Aerospace Materials & Technology, 2020, 50(6): 8-14 (in Chinese). | |
4 | UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects?[J]. Acta Astronautica, 2020, 176: 341-356. |
5 | 孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报, 2022, 43(6): 527590. |
SUN C. Development status, challenges and trends of strength technology for hypersonic vehicles?[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 527590 (in Chinese). | |
6 | PETERS A B, ZHANG D J, CHEN S, et al. Materials design for hypersonics?[J]. Nature Communications, 2024, 15(1): 3328. |
7 | 郭朝邦, 李文杰. 高超声速飞行器结构材料与热防护系统[J]. 飞航导弹, 2010(4): 88-94. |
GUO C B, LI W J. Structural materials and thermal protection system of hypersonic vehicle?[J]. Aerodynamic Missiles Journal, 2010(4): 88-94 (in Chinese). | |
8 | 张斌, 许爱军, 代国宝, 等. 美国X-43A高超声速飞行器先进制造技术分析[J/OL]. 战术导弹技术, (2022-07-29) [2025-01-07]. . |
ZHANG B, XU A J, DAI G B, et al. Analysis of advanced manufacturing technology for X-43A hypersonic vehicle in USA[J/OL]. Tactical Missile Technology, (2022-07-29) [2025-01-07]. (in Chinese). | |
9 | William G F, Greg E H. Ultra-high temperature ceramics: Materials for extreme environments[J]. Scripta Materialia, 2017, 129: 94-99. |
10 | 赵立业. 透视俄罗斯高超音速武器发展[J]. 军事文摘, 2019(15): 42-44. |
ZHAO L Y. Perspective on the development of Russian hypersonic weapons[J]. Military Digest, 2019(15): 42-44 (in Chinese). | |
11 | 李俊宁, 冯志海, 张大海, 等. 可重复使用热防护材料研究进展[J]. 宇航材料工艺, 2024, 54(2): 1-10. |
LI J N, FENG Z H, ZHANG D H, et al. Reusable thermal protection materials: A review[J]. Aerospace Materials & Technology, 2024, 54(2): 1-10 (in Chinese). | |
12 | 刘宝瑞, 张伟, 吴振强, 等. 高马赫飞行器高温复合材料结构应用与研究进展[C]∥ 第17届全国复合材料学术会议论文集. 北京: 中国航空学会, 2012: 6. |
LIU B R, ZHANG W, WU Z Q, et al. Application and research of high-temperature composite structure in hypersonic vehicle[C]∥Proceedings of 17th National Conference on Composite Materials. Beijing: Aviation Society of China, 2012: 6 (in Chinese). | |
13 | 刘永胜, 曹立阳, 张运海, 等. 高超声速飞行器热防护用超高温复合材料的研究进展[J]. 复合材料科学与工程, 2022(10): 107-118. |
LIU Y S, CAO L Y, ZHANG Y H, et al. Research progress on ultra-high temperature composites for thermal protection of hypersonic vehicles[J]. Composites Science and Engineering, 2022 (10): 107-118 (in Chinese). | |
14 | The European Space Agency. N° 7—2023: Loss of flight VV22: Independent Enquiry Commission announces conclusions[EB/OL]. (2023-03-03) [2025-01-07]. . |
15 | OPEKA M M, TALMY I G, ZAYKOSKI J A. Oxidation-based materials selection for 2 000 ℃ + hypersonic aerosurfaces: Theoretical considerations and historical experience?[J]. Journal of Materials Science, 2004, 39(19): 5887-5904. |
16 | YIN X M, ZHANG X, LIU H M, et al. Novel structural design strategies in ceramic-modified C/C composites[J]. Accounts of Materials Research, 2023, 4(12): 1095-1107. |
17 | WANG R N, ZHANG J P, FEI J, et al. Construction of gradient structure C/C-ZrC-SiC composites with good ablation resistance[J]. Ceramics International, 2024, 50(20): 39285-39297. |
18 | LI W, LV J S, LI J T, et al. Superior ablation resistance of C/C-HfC-SiC composite sharp leading edges above 2 500 ℃ prepared by precursor infiltration and pyrolysis[J]. Journal of Materiomics, 2025, 11(2): 100879. |
19 | SUN J, WANG Y Q, ZHANG Y Y, et al. Microstructure and mechanical properties of C/C composites modified by single-source precursor derived ceramics[J]. Journal of the European Ceramic Society, 2022, 42(13): 5419-5431. |
20 | LIU N K, GUO L J, KOU G, et al. The influence of heat treatment on the ablation behavior of the C/Cx-SiCy composites tested by thin-blade under oxyacetylene torch[J]. Ceramics International, 2022, 48(15): 22523-22533. |
21 | TANG Z X, YI M Z, ZHOU Y M, et al. Mechanical and ablation properties of 3D orthogonal woven C/C-SiC composite based on high-solid-loading slurry impregnation?[J]. Journal of Materials Science, 2023, 58(22): 9196-9209. |
22 | SERVADEI F, ZOLI L, GALIZIA P, et al. Preparation of UHTCMCs by hybrid processes coupling polymer infiltration and pyrolysis with hot pressing and vice versa[J]. Journal of the European Ceramic Society, 2022, 42(5): 2118-2126. |
23 | MAGNANT J, PAILLER R, LE PETITCORPS Y, et al. Fiber-reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering[J]. Journal of the European Ceramic Society, 2013, 33(1): 181-190. |
24 | KOU S J, MAO Y H, MA J C, et al. Microstructure evolution and properties of Hf/Zr-based UHTCs modified C/C composites prepared by reactive melt infiltration method[J]. Journal of the European Ceramic Society, 2024, 44(6): 3610-3621. |
25 | LI Q G, DONG S M, WANG Z, et al. Fabrication and properties of 3-D Cf/ZrB2-ZrC-SiC composites via polymer infiltration and pyrolysis[J]. Ceramics International, 2013, 39(5): 5937-5941. |
26 | YAO J J, PANG S Y, WANG Y H, et al. Effect of C/SiC volume ratios on mechanical and oxidation behaviors of Cf/C-SiC composites fabricated by chemical vapor infiltration technique[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 801-811. |
27 | RAN L P, RAO F, PENG K, et al. Preparation and properties of C/C-ZrB2-SiC composites by high-solid-loading slurry impregnation and polymer infiltration and pyrolysis (PIP)[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(10): 2141-2150. |
28 | SOGABE T, OKADA O, KURODA K, et al. Improvement in properties and air oxidation resistance of carbon materials by boron oxide impregnation?[J]. Carbon, 1997, 35(1): 67-72. |
29 | LIU L, LI H J, FENG W, et al. Effect of surface ablation products on the ablation resistance of C/C-SiC composites under oxyacetylene torch[J]. Corrosion Science, 2013, 67: 60-66. |
30 | LI W, XIANG Y, WANG S, et al. Ablation behavior of three-dimensional braided C/SiC composites by oxyacetylene torch under different environments[J]. Ceramics International, 2013, 39(1): 463-468. |
31 | KUMAR C V, KANDASUBRAMANIAN B. Advances in ablative composites of carbon based materials: A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 22663-22701. |
32 | FU Y Q, ZHANG Y L, CHEN H, et al. Ultra-high temperature performance of carbon fiber composite reinforced by HfC nanowires: A promising lightweight composites for aerospace engineering[J]. Composites Part B: Engineering, 2023, 250: 110453. |
33 | 高勇, 王金金, 查柏林, 等. 烧蚀时间对C/C-SiC复合材料高超声速富氧环境烧蚀机制的影响[J]. 复合材料学报, 2023, 40(1): 472-484. |
GAO Y, WANG J J, ZHA B L, et al. Effect of ablation time on ablation mechanism of C/C-SiC composites in hypersonic and oxygen-enriched environment[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 472-484 (in Chinese). | |
34 | 吴小军, 刘明强, 张兆甫, 等. RMI法制备穿刺C/C-SiC复合材料的微结构及烧蚀性能[J]. 稀有金属材料与工程, 2021, 50(11): 4023-4030. |
WU X J, LIU M Q, ZHANG Z F, et al. Microstructure and ablation properties of the pierced C/C-SiC composites prepared by reactive melt infiltration[J]. Rare Metal Materials and Engineering, 2021, 50(11): 4023-4030 (in Chinese). | |
35 | SHEN X T, GAO N, SHI Z Q, et al. New insight into the ablation behavior of C/C-ZrC composites in a nitrogen plasma torch with a high heat flux of~25 MW/m2 [J]. Corrosion Science, 2021, 185: 109409. |
36 | FENG T, TONG M D, YAO S T, et al. Effect of PyC interface phase on the cyclic ablation resistance and flexural properties of two-dimensional Cf/HfC composites[J]. Journal of the European Ceramic Society, 2021, 41(1): 158-166. |
37 | ZHANG J P, FU Q G, TONG M D, et al. Microstructure, ablation behavior and thermal retardant ability of C/C-HfB2 composites prepared by precursor infiltration pyrolysis combined with chemical vapor infiltration[J]. Journal of Alloys and Compounds, 2018, 742: 123-129. |
38 | OUYANG H B, ZHANG Y L, LI C Y, et al. Effects of ZrC/SiC ratios on mechanical and ablation behavior of C/C-ZrC-SiC composites prepared by carbothermal reaction of hydrothermal co-deposited oxides[J]. Corrosion Science, 2020, 163: 108239. |
39 | YAN C L, LUO P, ZHANG J J, et al. Ablation behavior of Cf/ZrC-SiC ultra-high temperature ceramic composites in oxyacetylene torch and plasma wind tunnel[J]. Materials Today Communications, 2024, 41: 110477. |
40 | LUO L, WANG Y G, DUAN L Y, et al. Ablation behavior of C/SiC-HfC composites in the plasma wind tunnel[J]. Journal of the European Ceramic Society, 2016, 36(15): 3801-3807. |
41 | ZHAO R D, PANG S Y, LIANG B, et al. Comparative ablation behaviors of C/SiC-ZrC and C/SiC-HfC composites prepared by ceramization of carbon aerogel preforms[J]. Corrosion Science, 2023, 225: 111623. |
42 | MUNGIGUERRA S, DI MARTINO G D, CECERE A, et al. Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites[J]. Corrosion Science, 2019, 149: 18-28. |
43 | HU Y, LU J, NI D W, et al. Microstructure evolution and ablation mechanisms of Csf/ZrB2-SiC composites at different heat fluxes under air plasma flame[J]. Journal of the European Ceramic Society, 2024, 44(6): 3514-3524. |
44 | CHEN B W, NI D W, LU J, et al. Multi-cycle and long-term ablation behavior of Cf/ZrB2-SiC composites at 2 500 ℃[J]. Corrosion Science, 2021, 184: 109385. |
45 | CHEN H R, LIU W, SUN Y N, et al. Cyclic oxidation and ablation behavior of ZrC-HfC-TaC modified C/SiC composites[J]. Rare Metal Materials and Engineering, 2022, 51(12): 4429-4435. |
46 | FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364. |
47 | TANG S F, DENG J Y, WANG S J, et al. Ablation behaviors of ultra-high temperature ceramic composites[J]. Materials Science and Engineering: A, 2007, 465(1-2): 1-7. |
48 | TAN Q, JIAO X Y, HE Q C, et al. Effect of mullite content on microstructure and ablation behavior of mullite modified C/C-SiC-HfC composites[J]. Corrosion Science, 2023, 222: 111405. |
49 | ZHANG X, HE Q C, QING M C, et al. Ablation behavior of La2O3 modified C/C-ZrC composites fabricated by precursor infiltration and pyrolysis[J]. Ceramics International, 2023, 49(9): 14335-14345. |
50 | ZHANG Y, HU D, GUO L X, et al. La2O3-modified C/C-ZrC composites with long-term cyclic ablation resistance?[J]. Journal of the American Ceramic Society, 2025, 108(4): e20302. |
51 | CHEN B W, NI D W, BAO W C, et al. Engineering Cf/ZrB2-SiC-Y2O3 for thermal structures of hypersonic vehicles with excellent long-term ultrahigh temperature ablation resistance[J]. Advanced Science, 2023, 10(34): e2304254. |
52 | FANG C Q, HUANG B Y, YANG X, et al. Effects of LaB6 on the microstructures and ablation properties of 3D C/C-SiC-ZrB2-LaB6 composites[J]. Journal of the European Ceramic Society, 2020, 40(8): 2781-2790. |
53 | ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953. |
54 | WU Y, LIANG B, ZHAO R D, et al. Fracture mechanical and ablation behaviors of C/SiC-Cu3Si-Cu interpenetrating composites and their dependence on metal addition and interface thickness[J]. Composites Part B: Engineering, 2024, 283: 111632. |
55 | WANG S, YIN J, XIEFENG M Y, et al. Microstructure and ablation behaviour of C/C-SiC-ZrC-Cu composites prepared by reactive melt infiltration?[J]. Materials Today Communications, 2024, 38: 108389. |
56 | AKRAMI S, EDALATI P, FUJI M, et al. High-entropy ceramics: Review of principles, production and applications[J]. Materials Science and Engineering: Reports, 2021, 146: 100644. |
57 | NI N, DING Q, SHI Y C, et al. Ablation behavior of high-entropy carbides ceramics (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C upon exposition to an oxyacetylene torch at 2 000 ℃[J]. Journal of the European Ceramic Society, 2023, 43(6): 2306-2319. |
58 | HE H R, YANG J G, GUO W J, et al. Microstructures and formation mechanism of continuous carbon fiber-reinforced (TiZrHfNbTa)C high-entropy ceramic composites fabricated via high-entropy alloy reactive melt infiltration?[J]. Ceramics International, 2023, 49(22): 36997-37008. |
59 | HU Y, NI D W, CHEN B W, et al. Ablation behavior and mechanisms of Cf/(CrZrHfNbTa)C-SiC high-entropy composite at temperatures up to 2 450 ℃[J]. Journal of the American Ceramic Society, 2024, 107(12): 8661-8675. |
60 | CAI F Y, NI D W, ZHOU Z Y, et al. Ablation mechanism of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC composite during plasma ablation above 2 000 ℃[J]. Journal of Materials Science & Technology, 2025, 213: 109-117. |
61 | CAI F Y, NI D W, BAO W C, et al. Ablation behavior and mechanisms of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites[J]. Composites Part B: Engineering, 2022, 243: 110177. |
62 | GAI W H, ZHANG Y L, CHEN H, et al. Controllable growth of (Hf, Zr)B2 solid solution coating via CVD for ultra-high temperature ablation of C/C composites[J]. Journal of the European Ceramic Society, 2024, 44(5): 2821-2830. |
63 | SUN S J, JIAO J, JIAO C R, et al. Effect of raw particle size on microstructure and anti-ablation of the ZrB2-SiC coatings?[J]. Surface and Coatings Technology, 2023, 466: 129647. |
64 | LI T, ZHANG Y L, FU Y Q, et al. Siliconization elimination for SiC coated C/C composites by a pyrolytic carbon coating and the consequent improvement of the mechanical property and oxidation resistances[J]. Journal of the European Ceramic Society, 2021, 41(10): 5046-5055. |
65 | JIANG Y, LIU T Y, RU H Q, et al. Oxidation and ablation protection of double layer HfB2-SiC-Si/SiC-Si coating for graphite materials[J]. Journal of Alloys and Compounds, 2019, 782: 761-771. |
66 | 杨鑫, 黄启忠, 苏哲安, 等. C/C复合材料的高温抗氧化防护研究进展[J]. 宇航材料工艺, 2014, 44(1): 1-15. |
YANG X, HUANG Q Z, SU Z A, et al. Review of recent progress on oxidation protection for C/C composites at high temperature[J]. Aerospace Materials & Technology, 2014, 44(1): 1-15 (in Chinese). | |
67 | 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 023716. |
HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials: Application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 023716 (in Chinese). | |
68 | ZHANG J P, FU Q G, QU J L. Effect of temperature gradient on the erosion behavior of SiC coating for carbon/carbon composites in a combustion environment[J]. Ceramics International, 2016, 42(16): 18411-18417. |
69 | WANG R Q, WANG N, ZHU S Z, et al. Study on the mechanism of ultra-high temperature ablation of ZrB2-SiC-TaSi2 coatings by low-pressure plasma spraying on the C/C composites[J]. Ceramics International, 2023, 49(7): 11344-11354. |
70 | NISAR A, HASSAN R, AGARWAL A, et al. Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems[J]. Ceramics International, 2022, 48(7): 8852-8881. |
71 | WYATT B C, NEMANI S K, HILMAS G E, et al. Ultra-high temperature ceramics for extreme environments?[J]. Nature Reviews Materials, 2023, 9(11): 773-789. |
72 | WANG Y L, XIONG X, LI G D, et al. Microstructure and ablation behavior of hafnium carbide coating for carbon/carbon composites[J]. Surface and Coatings Technology, 2012, 206(11-12): 2825-2832. |
73 | WANG S L, LI K Z, LI H J, et al. Structure evolution and ablation behavior of ZrC coating on C/C composites under single and cyclic oxyacetylene torch environment[J]. Ceramics International, 2014, 40(10): 16003-16014. |
74 | HAO J J, LI J Y, ZOU B L, et al. Effect of phase composition on the oxidation resistance of ZrB2-SiC coatings[J]. Journal of the European Ceramic Society, 2022, 42(5): 2097-2106. |
75 | LIU X Z, DENG C M, DENG C G, et al. Mullite-modified ZrB2-MoSi2 coating for carbon/carbon composites to withstand long term ablation[J]. Ceramics International, 2018, 44(4): 4330-4337. |
76 | XU Y X, PAN X H, HUANG S S, et al. Effect of solid oxidation products on the ablation mechanisms of ZrC and HfC based coatings above 2 000 ℃[J]. Journal of Materials Research and Technology, 2023, 22: 1900-1910. |
77 | WANG Y F, LIU Y B, MA Z, et al. Oxidation ablation resistance of ZrB2-HfB2-SiC-TaSi2 coating prepared on C/C composite surface[J]. Surface and Coatings Technology, 2023, 466: 129615. |
78 | YANG Y, LI K Z, ZHAO Z G, et al. HfC-ZrC-SiC multiphase protective coating for SiC-coated C/C composites prepared by supersonic atmospheric plasma spraying[J]. Ceramics International, 2017, 43(1): 1495-1503. |
79 | MU G Y, LIU Y B, TIAN X C, et al. Study on the ablation resistance of ZrB2-SiC-LaSi2 coating prepared on the C/C composites?[J]. Corrosion Science, 2024, 227: 111697. |
80 | WANG D, ZHANG L, LUO X T, et al. MoSi2 addition for high ablation resistance of dense ZrB2-based composite coating prepared by very low-pressure plasma spraying[J]. Corrosion Science, 2022, 209: 110800. |
81 | ZHOU L, ZHANG J P, HU D, et al. High temperature oxidation and ablation behaviors of HfB2-SiC/SiC coatings for carbon/carbon composites fabricated by dipping-carbonization assisted pack cementation[J]. Journal of Materials Science & Technology, 2022, 111: 88-98. |
82 | GAO Z T, MA Z, LIU Q, et al. Anti-ablation performance of plasma sprayed ZrB2/SiC coatings on C/C substrates and the influence of a chemical vapor deposited SiC interlayer?[J]. Materials Today Communications, 2023, 36: 106591. |
83 | HU D, LI X X, CHEN S L, et al. Design of long-term ablation protective Zr0.92Ta0.04Si0.04O2 coating via large lattice distortion and limited phase precipitation[J]. Corrosion Science, 2025, 245: 112689. |
84 | PAN X H, NIU Y R, LIU T, et al. Ablation behaviors of ZrC-TiC coatings prepared by vacuum plasma spray: Above 2 000?℃[J]. Journal of the European Ceramic Society, 2019, 39(11): 3292-3300. |
85 | XU Y X, ZHENG W, DAI M Q, et al. Effect of TaSi2 addition on long-term ablation behavior of HfB2-SiC coating[J]. Journal of the European Ceramic Society, 2023, 43(14): 5802-5813. |
86 | KIM H S, KANG B R, CHOI S M. Fabrication and characteristics of a HfC/TiC multilayer coating by a vacuum plasma spray process to protect C/C composites against oxidation?[J]. Corrosion Science, 2021, 178: 109068. |
87 | FENG G H, CHEN L, YAO X Y, et al. Design and characterization of zirconium-based multilayer coating for carbon/carbon composites against oxyacetylene ablation[J]. Corrosion Science, 2021, 192: 109785. |
88 | WANG P, LI S J, WEI C C, et al. Microstructure and ablation properties of SiC/ZrB2-SiC/ZrB2/SiC multilayer coating on graphite[J]. Journal of Alloys and Compounds, 2019, 781: 26-36. |
89 | ZHANG X M, ZHANG Y Y, GUO L X, et al. Ablation resistance of ZrC coating modified by polymer-derived SiHfOC ceramic microspheres at ultrahigh temperature[J]. Journal of Materials Science & Technology, 2024, 182: 119-131. |
90 | YE Z M, ZENG Y, XIONG X, et al. The synergistic role of hierarchical preferential oxidation in the enhanced ablation performance of multi-phase multicomponent ultra-high temperature ceramics[J]. Journal of the European Ceramic Society, 2023, 43(15): 6718-6731. |
91 | WANG X F, WANG X G, YANG Q Q, et al. High-strength medium-entropy (Ti, Zr, Hf)C ceramics up to 1 800 ℃[J]. Journal of the American Ceramic Society, 2021, 104(6): 2436-2441. |
92 | LI J C, ZHANG Y L, ZHAO Y X, et al. A novel (Hf1/3Zr1/3Ti1/3)C medium-entropy carbide coating with excellent long-life ablation resistance applied above 2 100 ℃?[J]. Composites Part B: Engineering, 2023, 251: 110467. |
93 | LV J S, LI W, LI T, et al. Multicomponent (Hf-Zr-Ta)B2 coatings for carbon/carbon composites and structural optimization enabling superior ablation resistance[J]. Journal of Materials Science & Technology, 2025, 204: 115-126. |
94 | QIANG X F, LI H J, LIU Y F, et al. Oxidation and erosion resistance of multi-layer SiC nanowires reinforced SiC coating prepared by CVD on C/C composites in static and aerodynamic oxidation environments[J]. Ceramics International, 2018, 44(14): 16227-16236. |
95 | REN J C, ZHANG Y L, ZHANG P F, et al. Ablation resistance of HfC coating reinforced by HfC nanowires in cyclic ablation environment[J]. Journal of the European Ceramic Society, 2017, 37(8): 2759-2768. |
96 | HU D, FU Q G, LI X X, et al. Discussion on structural parameters of the multilayer ZrC/TaC coatings based on stress analysis and ablation behaviors[J]. Surface and Coatings Technology, 2022, 435: 128243. |
97 | FENG G H, LI H J, YAO X Y, et al. Ablation resistance of HfC-TaC/HfC-SiC alternate coating for SiC-coated carbon/carbon composites under cyclic ablation[J]. Journal of the European Ceramic Society, 2021, 41(6): 3207-3218. |
98 | ZHANG J, ZHANG Y L, FU Y Q, et al. Long-time ablation behavior of the multilayer alternating CVD-(SiC/HfC)3 coating for carbon/carbon composites[J]. Corrosion Science, 2021, 189: 109586. |
99 | SHAN Y C, FU Q G, LI H J, et al. Improvement of the bonding strength and the oxidation resistance of SiC coating on C/C composites by pre-oxidation treatment[J]. Surface and Coatings Technology, 2014, 253: 234-240. |
100 | ZHANG J P, FU Q G, WANG Y J. Interface design and HfC additive to enhance the cyclic ablation performance of SiC coating for carbon/carbon composites from 1 750 ℃ to room temperature under vertical oxyacetylene torch[J]. Corrosion Science, 2017, 123: 139-146. |
101 | XIE X M, TANG X, SU Z A, et al. Oxidation and ablation behaviours of a SiCnw@SiC-Si coating fabricated for carbon-fibre-reinforced carbon-matrix composites via thermal evaporation and gaseous silicon infiltration[J]. Ceramics International, 2023, 49(6): 9130-9137. |
102 | ZHUANG L, FU Q G, LI H J. SiCnw/PyC core-shell networks to improve the bonding strength and oxyacetylene ablation resistance of ZrB2-ZrC coating for C/C-ZrB2-ZrC-SiC composites[J]. Carbon, 2017, 124: 675-684. |
103 | TONG M D, FU Q G, LIANG M Y, et al. Effect of PyC-SiC double-layer interface on ablation behaviour of impacted CVD-SiCnws/HfC coating[J]. Corrosion Science, 2021, 191: 109741. |
104 | TONG M D, FU Q G, FENG T, et al. Effect on BN interphase thickness upon SiCnws@BN/HfC coating performance under impact and ablation environment[J]. International Journal of Applied Ceramic Technology, 2024, 21(1): 240-253. |
105 | REN J C, ZHANG Y L, ZHANG J, et al. Improving the flexural property and long-lasting anti-ablation performance of the CVD-HfC coating by in situ growing HfC nanowires[J]. Ceramics International, 2019, 45(18): 24294-24302. |
106 | LI B, LI H J, YAO X Y, et al. Preparation and ablation resistance of ZrC nanowires-reinforced CVD-ZrC coating on sharp leading edge C/C composites[J]. Applied Surface Science, 2022, 584: 152617. |
107 | REN J C, LV C F, DUAN Y T, et al. Microstructure and ablation performance of HfC/PyC core-shell structure nanowire-reinforced Hf1- x Zr x C coating[J]. Journal of the European Ceramic Society, 2021, 41(15): 7450-7463. |
108 | CHEN H, ZHANG Y L, FU Y Q, et al. Novel Hf x Ta1- x C solid solution nanowire toughened HfC coating: An effective strategy for synchronous enhanced mechanical and anti-ablation performance[J]. Journal of Advanced Ceramics, 2024, 13(5): 590-601. |
109 | MA J C, KOU S J, MA Y J, et al. Effects of the La2O3 addition contents on the ablation performance of in situ La-doped ZrC-SiC-ZrSi2 coating for C/C-ZrC-SiC composites?[J]. Surface and Coatings Technology, 2023, 452: 129104. |
110 | TIAN X F, SHI X H, YANG L, et al. Preparation and ablation properties of SiC nanowire-reinforced ZrC-SiC coating-matrix integrated C/C composites[J]. Ceramics International, 2021, 47(22): 31251-31258. |
111 | TANG Z X, ZHOU Y M, LIU R Z, et al. Preparation and ablation behavior of a ZrB2-SiC coating-matrix integrated C/C composite[J]. Journal of the European Ceramic Society, 2024, 44(5): 2998-3011. |
112 | ZHONG L, GUO L J, WANG C Y, et al. Preparation and long-term ablation behavior of Cf-reinforced ZrC-SiC coated C/C-ZrC-SiC composite[J]. Journal of the European Ceramic Society, 2024, 44(2): 693-704. |
113 | 韩文波, 周长灵, 胡平, 等. C/C-SiC-ZrB2复合材料表面SiC/ZrB2-SiC/SiC涂层的制备及抗氧化烧蚀性能研究[J]. 装备环境工程, 2019, 16(10): 1-7. |
HAN W B, ZHOU C L, HU P, et al. Preparation and oxidation ablation resistance of SiC/ZrB2-SiC/SiC coating on C/C-SiC-ZrB2 composites[J]. Equipment Environmental Engineering, 2019, 16(10): 1-7 (in Chinese). | |
114 | XU L, CHENG J, LI X C, et al. Preparation of carbon/carbon-ultra high temperature ceramics composites with ultra high temperature ceramics coating[J]. Journal of the American Ceramic Society, 2018, 101(9): 3830-3836. |
115 | TANG P J, HU C L, PANG S Y, et al. Self-densification behavior, interfacial bonding and cyclic ablation resistance of HfSi2-ZrSi2 modified SiC/ZrB2-SiC/SiC coating for Cf/SiC composite[J]. Corrosion Science, 2023, 219: 111223. |
116 | JIANG Y, HU C L, LIANG B, et al. Cyclic ablation resistance at 2 300 ℃ of (Hf0.4Zr0.4Ta0.2)B2-SiC-Si coating for C/SiC composites prepared by SiC-assisted reactive infiltration of silicon[J]. Surface and Coatings Technology, 2022, 451: 129072. |
/
〈 |
|
〉 |