面向飞-推融合构型的分布式涵道风扇新型高效高精度动量源方法

  • 韩凯 ,
  • 白俊强 ,
  • 冯少东 ,
  • 余时泷 ,
  • 黄俊炜 ,
  • 唐矗 ,
  • 邱亚松
展开
  • 1. 西北工业大学
    2. 西北工业大学无人系统技术研究院

收稿日期: 2024-12-30

  修回日期: 2025-03-04

  网络出版日期: 2025-03-06

基金资助

中央高校科研基本业务费;山西省科技重大专项计划“揭榜挂帅”项目;西北工业大学博士论文创新基金

A novel high-efficiency and high-precision momentum source method for distributed ducted fans in Aero-Propulsion coupling configuration

  • HAN Kai ,
  • BAI Jun-Qiang ,
  • FENG Shao-Dong ,
  • YU Shi-Long ,
  • HUANG Jun-Wei ,
  • TANG Chu ,
  • QIU Ya-Song
Expand

Received date: 2024-12-30

  Revised date: 2025-03-04

  Online published: 2025-03-06

摘要

分布式涵道风扇-机翼耦合构型因其复杂的部件和气动耦合效应,准确且高效地求解其气动特性是一项挑战性任务。为此,本文提出了一种基于雷诺平均纳维-斯托克斯(RANS)方程并充分考虑多部件气动-推进耦合效应的分布式涵道风扇动量源方法。该方法通过简化风扇动静叶的流场计算,大幅提高计算效率,同时准确捕捉机翼边界层粘性效应、涵道唇口加速效应及排气道尾迹等部件耦合影响,从而准确预测机翼、涵道唇口和排气道等部件的气动性能。具体而言,该方法首先使用 RANS 方程结合多重参考坐标系(MRF)方法计算准定常流场,提取交界面处的三方向速度、湍动能和涡耗散率等信息,并将其作为边界条件施加于无风扇构型,以模拟涵道风扇的动力效应。在单涵道风扇-翼段耦合构型测试中,该方法在单一构型下提取的流场信息可准确预测较大迎角范围内的同构型气动性能及不同翼型构型下的气动性能。与 MRF 方法相比,在2°~16°迎角下,本文方法计算的升力系数相对误差小于 2%,阻力系数相对误差小于 4.5%,并减少计算耗时超过90%,计算精度优于传统动量源方法。在分布式涵道风扇-机翼耦合构型测试中,该方法同样表现出较高精度与显著的效率优势,为分布式涵道风扇构型的气动性能预测提供了一种高效、可靠的工具。

本文引用格式

韩凯 , 白俊强 , 冯少东 , 余时泷 , 黄俊炜 , 唐矗 , 邱亚松 . 面向飞-推融合构型的分布式涵道风扇新型高效高精度动量源方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31728

Abstract

Due to its complex component composition and aerodynamic coupling effect, it is a challenging task to accurately and efficiently predict the aerodynamic characteristics of the distributed ducted fan-wing coupling configuration. To this end, this paper proposes a distributed ducted fan momentum source method based on the Reynolds-averaged Navier-Stokes (RANS) equations and fully considering the aerodynamic-propulsion coupling effect of multiple com-ponents. This method greatly improves the computational efficiency by simplifying the flow field calculation of the rotor and stator blades, while accurately capturing the wing boundary layer viscosity effect, the duct lip acceleration effect, and the exhaust duct wake effect, thereby accurately predicting the aerodynamic performance of components such as the wing, duct lip, and exhaust duct. Specifically, this method uses the RANS equation combined with the multiple reference frame (MRF) method to calculate the quasi-steady flow field, extracts information such as the three-directional velocity, turbulent kinetic energy, and eddy dissipation rate at the interface, and applies it as a boundary condition to the fan-less configuration to simulate the dynamic effect of the ducted fan. In the single ducted fan-wing section coupled configuration test, compared with the MRF method, the lift coefficient calculated by this method has a relative error of less than 2%, and the drag coefficient has a relative error of less than 4.5%, and the calculation time is reduced by more than 90%, and the calculation accuracy is better than the traditional momentum source method. In addition, the study shows that the flow field information extracted by this method under a single configuration can accurately predict the aerodynamic performance of the same configuration within a large angle of attack range and the aerodynamic performance under different airfoil configurations. In the distributed ducted fan-wing coupled configuration test, this method also shows high accuracy and significant efficiency advantages, providing a reliable and efficient tool for predicting the aerodynamic performance of distributed ducted fan configu-rations.

参考文献

[1]邓景辉.电动垂直起降飞行器的技术现状与发展[J].航空学报, 2024, 45(05):55-77 [2]孙侠生, 程文渊, 穆作栋, 等.电动飞机发展白皮书[J].航空科学技术, 2019, 30(11):1-7 [3]Secretariat I.Electric, Hybrid, and Hydrogen Aircraft—State of Play[J]. Climate Change Mitigation: Technology and Operations, 2019: 124-130. [4]Kim H D, Perry A T, Ansell P J.A review of distributed electric propulsion concepts for air vehicle technolo-gy[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). IEEE, 2018: 1-21. [5]Perry A T,Ansell P J,Kerho M F.Aero-Propulsive and Propulsor Cross- Coupling Effects on a Distributed Propulsion System[J].Journal of Aircraft, 2018, 55(6):2414-2426 [6]Casagrande Hirono F, Torija Martinez A, Elliott A, et al.Aeroacoustic design and optimisation of an all-electric ducted fan propulsion module for low-noise im-pact[C]//28th AIAA/CEAS Aeroacoustics 2022 Con-ference. 2022: 3034. [7]Liou M F, Gronstal D, Kim H J, et al.Aerodynamic design of the hybrid wing body with nacelle: N3-X pro-pulsion-airframe configuration[C]//34th AIAA Applied Aerodynamics Conference. 2016: 3875. [8]Swaminathan N, Reddy S R P, RajaShekara K, et al.Flying cars and eVTOLs—Technology advancements,powertrain architectures,and design[J].IEEE Transac-tions on Transportation Electrification, 2022, 8(4):4105-4117 [9]Schmollgruber P, Donjat D, Ridel M, et al.Multidisci-plinary design and performance of the ONERA hybrid electric distributed propulsion concept (DRAGON)[C]//AIAA Scitech 2020 Forum. 2020: 0501. [10]Bacchini A, Cestino E.Electric VTOL configurations comparison[J].Aerospace, 2019, 6(3):26- [11]钱仲焱, 白俊强, 邱亚松等.集成有分布式涵道风扇的机翼和电动飞机 [P]. 中国专利: CN115489716B, 2023.12.29. [12]达兴亚, 李永红, 熊能, 等.翼身融合运输机分布式电推进系统设计及油耗评估[J].航空动力学报, 2019, 34(10):2158-2166 [13]de Vries R.Hybrid-Electric Aircraft with Over-the-Wing Distributed Propulsion: Aerodynamic Performance and Conceptual Design[D]. Delft: Delft University of Technology. 2022. [14]王科雷, 周洲, 郭佳豪等.分布式动力翼前飞状态动力气动耦合特性[J].航空学报, 2024, 45(02):137-155 [15]Upadhyay P, Zaman K B M Q.Effect of Incoming Boundary-Layer Characteristics on Performance of a Distributed Propulsion System[J].Journal of Propul-sion and Power, 2021, 37(5):701-712 [16]王海童, 王掩刚, 周芳, 等.基于面元法的分布式涵道推进系统进气道优化设计[J].推进技术, 2021, 42(11):2465-2473 [17]刘乾, 刘汉儒, 尚珣, 等.电推进涵道风扇气动快速求解方法及性能分析研究[J].推进技术, 2024, 45(03):136-143 [18]Kim H, Liou M S.Flow simulation and optimal shape design of N3-X hybrid wing body configuration using a body force method[J].Aerospace Science and Technology, 2017, (71):661-674 [19]张阳,周洲,郭佳豪.分布式涵道风扇喷流对后置机翼的气动性能影响[J].航空学报, 2021, 42(09):431-444 [20]Rong C, Qiushi L, Tianyu P, et al.Streamwise-body-force-model for rapid simulation combining internal and external flow fields[J].Chinese Journal of Aeronautics, 2016, 29(5):1205-1212 [21]邱奥祥, 桑为民, 张桐, 等.翼身融合布局飞机分布式推进边界层吸入效应影响研究[J].力学学报, 2024, 56(08):2448-2467 [22]Menter F.Zonal two equation kw turbulence models for aerodynamic flows[C]//23rd fluid dynamics, plasmady-namics, and lasers conference. 1993: 2906. [23]金奕星.螺旋桨滑流的转/静交界面数值模拟方法研究[D]. 南京: 南京航空航天大学, 2015: 45-61. Jin Yixing. Rotor/Stator Interface Numerical Simulation Research on Propeller Slipstream[D]. NanJing: Nanjing University of Aeronautics and Astronautics, 2015: 45-61. (in Chinese) [24]Dogruoz M B, Shankaran G.Computations with the multiple reference frame technique: Flow and temperature fields downstream of an axial fan[J].Numerical Heat Transfer, Part A: Applications, 2017, 71(5):488-510 [25]Silva P A S F, Tsoutsanis P, Antoniadis A F.Simple Multiple Reference Frame for High-order Solution of hovering Rotors with and without Ground Effect[J].Aerospace Scicence and Technology, 2021, 111:- [26]韩凯, 白俊强, 邱亚松, 等.涵道螺旋桨设计变量的影响及其流动机理[J].航空学报, 2022, 43(07):167-183 [27]郑志成.升力风扇垂直起降飞机总体设计方法研究[D]. 西安: 西北工业大学, 2013: 13-41. Zheng ZHicheng . Research on Conceptual Design Methodology for Lift-Fan VTOL aircraft[D]. North-western Polytechnical University, 2013: 13-41. (in Chi-nese) [28]徐诸霖, 达兴亚, 范召林, 等.一种适用于进气道风扇一体化计算的体积力模型[J].推进技术, 2019, 40(04):732-740 [29]Leng Y, Yoo H, Jardin T, et al.Aerodynamic modeling of propeller forces and moments at high angle of inci-dence[C]//AIAA SciTech 2019 Forum. 2019: 1332.
文章导航

/