星球探测张拉整体机器人的索驱动策略优化

  • 冯晓东 ,
  • 李城伟 ,
  • 刘珂 ,
  • 赵树彬 ,
  • 彭海军
展开
  • 1. 绍兴文理学院
    2. 北京大学
    3. 大连理工大学

收稿日期: 2024-11-19

  修回日期: 2025-02-13

  网络出版日期: 2025-03-06

基金资助

国家自然科学基金

Optimization of cable drive strategies for tensegrity robots in planetary exploration

  • FENG Xiao-Dong ,
  • LI Cheng-Wei ,
  • LIU Ke ,
  • ZHAO Shu-Bin ,
  • PENG Hai-Jun
Expand

Received date: 2024-11-19

  Revised date: 2025-02-13

  Online published: 2025-03-06

Supported by

National Natural Science Foundation of China

摘要

为降低十二杆张拉整体机器人(SC-12)在执行星球探测相关任务时的驱动及时间成本,提出了一种基于粒子群天牛须混合算法的索驱动优化策略。首先,基于SC-12的初始几何构型建立机器人等效模型,考虑重力矩及索调控量等多重约束,构建以驱动前后体系应变能差值为目标的驱动优化模型,克服了驱动过程中可能发生的索杆共面及基础底面异面的问题。通过非刚体运动分析方法确定不平衡状态下机器人的姿态,并利用粒子群天牛须混合算法获取最优驱动策略。最后,在机械系统动力学自动分析系统(ADAMS)中建立动力仿真模型,通过与杆驱动方式的对比验证了该方法在驱动成本优化方面的有效性。

本文引用格式

冯晓东 , 李城伟 , 刘珂 , 赵树彬 , 彭海军 . 星球探测张拉整体机器人的索驱动策略优化[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31552

Abstract

To reduce the actuation and time costs associated with executing planetary exploration tasks by the twelve-bar tensegrity robot (SC-12), a cable driven optimization strategy based on the Particle Swarm Optimization-Beetle Antennae Search (PSO-BAS) hybrid algorithm is proposed. Firstly, an equivalent model of the SC-12 robot is established based on its initial geometric configuration. By considering multiple constraints such as gravity moment and cable regulation, a drive opti-mization model is constructed with the objective of minimizing the difference in strain energy of the system before and after actuation. This approach overcomes potential issues such as coplanar cable-rod configurations and non-coplanar base planes that may arise during the actuation process. By Non-Rigid-body Motion Analysis (NRMA), the posture of the robot in an unbalanced state is determined. Furthermore, the optimal actuation strategy is obtained using the PSO-BAS hybrid algorithm. Finally, a dynamic simulation model was established in the Automatic Dynamic Analysis of Mechanical Systems (ADAMS). By comparing it with the rod-driven method, the effectiveness of this approach in optimizing driving costs was verified.

参考文献

[1]于登云, 潘博, 马超.星球探测机器人研究现状与发展展望[J].宇航学报, 2023, 44(04):633-643
[2]路达, 刘金国, 高海波.星球表面着陆巡视一体化探测机器人研究进展[J].航空学报, 2021, 42(01):100-116
[3]DYLAN S S, BOOTH J W, ROBERT L B, et al.Tensegrity Robotics[J].SOFT ROBOTICS, 2022, 9(4):639-656
[4]CHEN B, JIANG H.Swimming Performance of a Tensegrity Robotic Fish[J].SOFT ROBOTICS, 2019, 6(4):520-531
[5]CHUNG Y, LEE J H, JANG J H, et al.Jumping tensegrity robot based on torsionally prestrained SMA springs[J].ACS applied materials & interfaces, 2019, 11(43):40793-40799
[6]LIU C, LI K, YU X, et al.A Multimodal Self‐Propelling Tensegrity Structure.[J].ADVANCED MA-TERIALS, 2024, 36(25):-
[7]XU P, ZHENG J, LIU J, et al.Deep-Learning-Assisted Underwater 3D Tactile Tensegrity[J].RESEARCH, 2023, 6:-
[8]DAI X, LIU Y, WANG W, et al.Design and Experi-mental Validation of a Worm-Like Tensegrity Robot for In-Pipe Locomotion[J].JOURNAL OF BIONIC ENGINEERING, 2022, 20(2):515-529
[9]曹永亮, 李海泉, 李澳, 等.仿鲹科张拉整体式机器鱼的结构设计与动力学分析[J].科学通报, 2022, 67(35):4251-4262
[10]SABELHAUS A P, BRUCE J, CALUWAERTS K, et al.System design and locomotion of SUPERball, an un-tethered tensegrity robot[C]//2015 IEEE international conference on robotics and automation (ICRA). IEEE, 2015: 2867-2873.
[11]HAO S, LIU R, LIN X, et al.Configuration Design and Gait Planning of a Six-Bar Tensegrity Robot[J].AP-PLIED SCIENCES, 2022, 12(22):11845-
[12]Luo A, Liu H.Analysis for Feasibility of the Method for Bars Driving the Ball Tensegrity Robot[J].Journal of Mechanisms and Robotics, 2017, 9(5):-
[13]JEONG J, KIM I, CHOI Y, et al.Spikebot: A Multigait Tensegrity Robot with Linearly Extending Struts[J].Soft Robotics, 2024, 11(2):207-217
[14]杜汶娟, 马书根, 李斌, 等.可变结构体机器人滚动步态参数优化[J].机械工程学报, 2016, 52(17):127-136
[15]KIM K, AGOGINO A K, AGOGINO A M.Rolling locomotion of cable-driven soft spherical tensegrity robots[J].Soft robotics, 2020, 7(3):346-361
[16]SHIBATA M, HIRAI S.Moving strategy of tensegrity robots with semiregular polyhedral body[M]//Emerging Trends in Mobile Robotics. 2010: 359-366.
[17]FENG X, XU J, ZHANG J, et al.Trajectory Planning on Rolling Locomotion of Spherical Movable Tensegrity Robots with Multi-Gait Patterns[J].Soft Robotic, 2024, :-
[18]ZHANG J, OHSAKIM.Free-form Design of Tensegrity Structures by Non-Rigid-Body Motion Analysis[J].Proceedings of IASS Annual Symposia, 2013, :-
[19]JAIN M, SAIHJPAL V, SINGH N, et al.An Overview of Variants and Advancements of PSO Algorithm[J].Applied Sciences-Basel, 2022, 12(17):8392-
[20]JIANG X, LI S.Beetle Antennae Search without Pa-rameter Tuning (BAS-WPT) for Multi-objective Opti-mization[J].Filomat, 2020, 34(15):5113-9
[21]ZHANG B, DUAN Y, ZHANG Y, et al.Particle swarm optimization algorithm based on beetle antennae search algorithm to solve path planning prob-lem[C]//2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2020, 1: 1586-1589.
文章导航

/