基于生成式模型的三维飞行器外形泛化表征方法

  • 薛有涛 ,
  • 尧少波 ,
  • 杨雨欣 ,
  • 段毅 ,
  • 赵文文 ,
  • 李昊歌
展开
  • 1. 浙江大学
    2. 浙江大学航空航天学院
    3. 中国运载火箭技术研究院空间物理重点实验室
    4. 空间物理重点实验室

收稿日期: 2024-11-08

  修回日期: 2025-03-02

  网络出版日期: 2025-03-06

基金资助

国家自然科学基金;一院高校联合创新基金项目

Generalization of Three-Dimensional Flight Vehicle Shape Representation Using Generative Models

  • XUE You-Tao ,
  • YAO Shao-Bo ,
  • YANG Yu-Xin ,
  • DUAN Yi ,
  • ZHAO Wen-Wen ,
  • LI Hao-Ge
Expand

Received date: 2024-11-08

  Revised date: 2025-03-02

  Online published: 2025-03-06

摘要

未来飞行器复杂多变的设计需求对气动外形参数化方法的灵活性和有效性提出了更高的要求。针对传统飞行器几何参数化方法气动外形约束过强导致设计优化空间受限及复杂外形设计变量冗余导致“维度灾难”等问题,本文提出了一种基于生成式模型的三维飞行器气动外形泛化表征方法。该方法通过提取气动外形剖面图像几何特征,约束全局外形与局部点云扩散模型,实现三维外形点云快速生成,以满足三维复杂外形降维表达和灵活设计的工程需求。该方法主要包括三个核心模块:剖面图像几何特征提取和降维重构模型、三维外形点云生成模型与表面网格生成模型。这三个模块分别基于变分自编码器和残差网络、点云变分自编码器网络和条件可控生成扩散模型、以及可微泊松求解器,实现了从剖面图像到点云外形,再到表面网格的全流程多视角泛化表征。以三维翼身融合乘波体外形为例,通过控制隐变量空间中的泛化外形参数,实现了单个外形剖面图像生成耗时3秒,三维气动外形网格文件生成耗时80秒。所重构外形与初始外形的平均几何误差控制在1毫米以内,实现了飞行器复杂外形的高效泛化表征。此外,我们直接基于生成的表面网格导入计算流体力学软件,在不同攻角条件下进行了流场与气动特性的预示。相关研究成果为复杂飞行器的优化设计提供了一种智能且灵活的外形泛化表征手段。

本文引用格式

薛有涛 , 尧少波 , 杨雨欣 , 段毅 , 赵文文 , 李昊歌 . 基于生成式模型的三维飞行器外形泛化表征方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31511

Abstract

The evolving complexities in future hypersonic vehicle design requirements have heightened the call for enhanced flexibility and efficacy in aerodynamic shape parameterization methodologies. This research addresses the constraints imposed by conventional geometric parameterization approaches in hypersonic vehicle design, which tend to confine aerodynamic shapes excessively, limiting design optimization and culminating in the "dimensional disaster." To tackle these challenges, the study introduces a novel approach centered on generative models to generalize the depiction of three-dimensional hypersonic vehicle aerodynamic profiles. This innovative method entails extracting geometric attributes from aerodynamic profile images and imposing constraints on global and local point cloud diffusion models to facilitate the creation of three-dimensional point cloud representations, catering to the intricate demands of three-dimensional shape reduction and adaptable design in engineering contexts. The methodology encompasses models for geometric feature extraction and dimensionality reconstruction from profile images, three-dimensional shape point cloud generation, and surface mesh creation. These modules leverage variational autoencoders, residual networks, point cloud variational autoencoders, conditionally controllable generative diffusion models, and a differentiable Poisson solver, orchestrating a seamless progression from profile images to point cloud formations to surface meshes, thereby offering a comprehensive and diversified representation. In the context of the three-dimensional blended wing-body configuration, manipulating generalized shape parameters within latent variable spaces enables rapid generation of single profile images in 3 seconds and three-dimensional aerodynamic mesh files in 80 seconds. The fidelity of the reconstructed shape, with geometric deviations averaging less than 1mm from the original form, underscores its utility as a conduit for the generalized representation of intricate hypersonic vehicle profiles. Integrating the generated surface mesh data into computational fluid dynamics software for predictive analyses of flow fields and aerodynamic behaviors under varying angles of attack epitomizes a sophisticated and adaptable strategy for generalized shape representation, pivotal in optimizing complex hypersonic vehicle design endeavors.
文章导航

/