飞行器设计生成式模型专栏

基于生成式模型的三维飞行器外形泛化表征方法

  • 薛有涛 ,
  • 尧少波 ,
  • 杨雨欣 ,
  • 段毅 ,
  • 赵文文 ,
  • 李昊歌
展开
  • 1.浙江大学 航空航天学院,杭州 310027
    2.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
    3.浙江大学 浣江实验室,诸暨 311800
.E-mail: wwzhao@zju.edu.cn

收稿日期: 2024-11-08

  修回日期: 2024-12-23

  录用日期: 2025-02-17

  网络出版日期: 2025-03-06

基金资助

航天一院高校联合创新基金(CALT2023-09);空间物理重点实验室开放基金(SPL2024006)

Generalization of three-dimensional flight vehicle shape representation using generative models

  • Youtao XUE ,
  • Shaobo YAO ,
  • Yuxin YANG ,
  • Yi DUAN ,
  • Wenwen ZHAO ,
  • Haoge LI
Expand
  • 1.School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China
    2.Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
    3.Huangjiang Laboratory,Zhejiang University,Zhuji 311800,China
E-mail: wwzhao@zju.edu.cn

Received date: 2024-11-08

  Revised date: 2024-12-23

  Accepted date: 2025-02-17

  Online published: 2025-03-06

Supported by

CALT-University Joint Innovation Fund(CALT2023-09);Science and Technology on Space Physics Laboratory(SPL2024006)

摘要

未来飞行器复杂多变的设计需求对气动外形参数化方法的灵活性、有效性提出了更高的要求。针对传统飞行器几何参数化方法气动外形约束过强导致设计优化空间受限及复杂外形设计变量冗余导致“维度灾难”等问题,提出了一种基于生成式模型的三维飞行器气动外形泛化表征方法。该方法通过提取气动外形剖面图像几何特征,约束全局外形与局部点云扩散模型,实现三维外形点云快速生成,以满足三维复杂外形降维表达和灵活设计的工程需求。该方法通过3个核心模块实现从剖面图像到点云外形,再到表面网格的全流程多视角泛化表征:基于变分自编码器与残差网络的剖面图像几何特征提取、降维重构模型;融合点云变分自编码器网络、条件可控生成扩散模型的三维外形点云生成模型;采用可微泊松求解器的表面网格生成模型。以三维翼身融合乘波体外形为例,通过控制隐变量空间中的泛化外形参数,实现了单个外形剖面图像生成耗时3 s,三维气动外形网格文件生成耗时80 s。所重构外形与初始外形的平均几何误差控制在1 mm以内,实现了飞行器复杂外形的高效泛化表征。此外,直接基于生成的表面网格导入计算流体力学软件,在不同攻角条件下进行了流场与气动特性的预示。相关研究成果为复杂飞行器的优化设计提供了一种智能且灵活的外形泛化表征手段。

本文引用格式

薛有涛 , 尧少波 , 杨雨欣 , 段毅 , 赵文文 , 李昊歌 . 基于生成式模型的三维飞行器外形泛化表征方法[J]. 航空学报, 2025 , 46(10) : 631511 -631511 . DOI: 10.7527/S1000-6893.2025.31511

Abstract

The increasingly complex and dynamic design requirements of future hypersonic vehicle have heightened the call for enhanced flexibility and efficacy in aerodynamic shape parameterization methods. This research addresses the constraints imposed by conventional geometric parameterization methods in hypersonic vehicle design, which tend to confine aerodynamic shapes excessively, limiting design optimization and culminating in the “dimensional disaster”. To tackle these challenges, the study introduces a novel approach centered on generative models to generalize the depiction of three-dimensional hypersonic vehicle aerodynamic profiles. This innovative method entails extracting geometric attributes from aerodynamic profile images and imposing constraints on global and local point cloud diffusion models to facilitate the creation of three-dimensional point cloud representations, catering to the intricate demands of three-dimensional shape reduction and adaptable design in engineering contexts. The method achieves a comprehensive multi-view generalized representation pipeline from cross-sectional images to point cloud geometry and surface meshes through three core modules: a geometric feature extraction and dimensionality reduction reconstruction model for cross-sectional images based on Variational Autoencoder (VAE) and residual networks; a 3D geometric point cloud generation model integrating point cloud variational autoencoder networks with conditionally controllable generative diffusion models; a surface mesh reconstruction model employing a differentiable Poisson solver. In the context of the three-dimensional blended wing-body configuration, manipulating generalized shape parameters within latent variable spaces enables rapid generation of single profile images in 3 s and three-dimensional aerodynamic mesh files in 80 s. The reconstructed shapes maintain an average geometric error within 1 mm compared to the initial design, demonstrating efficient and accurate generalization of complex aircraft shapes. Furthermore, the generated surface meshes were directly imported into Computational Fluid Dynamics (CFD) software to predict flow fields and aerodynamic characteristics under different angles of attack. The results highlight the potential of this method as an intelligent and flexible aerodynamic shape generalization tool for optimizing complex aircraft designs.

参考文献

1 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报201233(4): 625-633.
  GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica201233(4): 625-633 (in Chinese).
2 SAMAREH J. Aerodynamic shape optimization based on free-form deformation[C]?∥10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2004.
3 LIU R L, HUA Y, ZHOU Z F, et al. Prediction and optimization of airfoil aerodynamic performance using deep neural network coupled Bayesian method[J]. Physics of Fluids202234(11): 117116.
4 SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids201931(5): 057103.
5 DU Q W, LIU T Y, YANG L K, et al. Airfoil design and surrogate modeling for performance prediction based on deep learning method[J]. Physics of Fluids202234(1): 015111.
6 SEO J, YOON H S, KIM M I. Establishment of CNN and encoder-decoder models for the prediction of characteristics of flow and heat transfer around NACA sections[J]. Energies202215(23): 9204.
7 CHEN D W, SUN Z X, YAO S B, et al. Data-driven rapid prediction model for aerodynamic force of high-speed train with arbitrary streamlined head[J]. Engineering Applications of Computational Fluid Mechanics202216(1): 2191-2206.
8 LI J C, DU X S, MARTINS J R R A. Machine learning in aerodynamic shape optimization[J]. Progress in Aerospace Sciences2022134: 100849.
9 MASTERS D A, TAYLOR N J, RENDALL T C S, et al. Geometric comparison of aerofoil shape parameterization methods[J]. AIAA Journal201755(5): 1575-1589.
10 CHANG I C, TORRES F J, TUNG C. Geometric analysis of wing sections[R]. Washington, D.C.: NASA, 1997.
11 ROBINSON G M, KEANE A J. Concise orthogonal representation of supercritical airfoils[J]. Journal of Aircraft200138(3): 580-583.
12 刘南, 白俊强, 邱亚松, 等. 基于本征正交分解的气动外形设计空间重构方法研究[J]. 西北工业大学学报201533(2): 171-177.
  LIU N, BAI J Q, QIU Y S, et al. Investigating aerodynamic shape design space reconstruction using proper orthogonal decomposition(POD)[J]. Journal of Northwestern Polytechnical University201533(2): 171-177 (in Chinese).
13 WU X J, ZHANG W W, PENG X H, et al. Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method?[J]. Aerospace Science and Technology201984: 632-640.
14 LI J L, ZHANG Y, ZHU B B, et al. The aerodynamic optimization of hypersonic vehicles with the proper-orthogonal-decomposition-based CST method[J]. Aerospace Science and Technology2024151: 109295.
15 YANG Y X, XUE Y T, ZHAO W W, et al. Aerodynamic shape optimization based on proper orthogonal decomposition reparameterization under small training sets[J]. Aerospace Science and Technology2024147: 109072.
16 LI J C, ZHANG M Q, MARTINS J R R A, et al. Efficient aerodynamic shape optimization with deep-learning-based geometric filtering[J]. AIAA Journal202058(10): 4243-4259.
17 CHEN W, CHIU K, FUGE M D. Airfoil design parameterization and optimization using Bézier generative adversarial networks[J]. AIAA Journal202058(11): 4723-4735.
18 WANG Y Y, SHIMADA K, BARATI FARIMANI A. Airfoil GAN: encoding and synthesizing airfoils for aerodynamic shape optimization[J]. Journal of Computational Design and Engineering202310(4): 1350-1362.
19 VISWANATH A, FORRESTER A I J, KEANE A J. Constrained design optimization using generative topographic mapping[J]. AIAA Journal201452(5): 1010-1023.
20 DORONINA O A, GREY Z J, GLAWS A. Grassmannian shape representations for aerodynamic applications[DB/OL]. arXiv preprint: 2201.04649, 2022.
21 ZENG X H, VAHDAT A, WILLIAMS F, et al. LION: Latent point diffusion models for 3D Shape Generation[DB/OL]. arXiv preprint: 2210.06978, 2022.
22 LIU Z J, TANG H T, LIN Y J, et al. Point-voxel CNN for efficient 3D deep learning[DB/OL]. arXiv preprint1907.03739, 2019.
23 PENG S Y, JIANG C, LIAO Y Y, et al. Shape as points: A differentiable Poisson solver[DB/OL]. arXiv preprint: 2106.03452, 2021.
24 陈小庆, 侯中喜, 刘建霞, 等. 边缘钝化对乘波构型性能影响分析[J]. 宇航学报200930(4): 1334-1339.
  CHEN X Q, HOU Z X, LIU J X, et al. The blunt leading edge’s influence to the performance of waverider[J]. Journal of Astronautics200930(4): 1334-1339 (in Chinese).
25 刘建霞, 侯中喜, 陈小庆, 等. 高超声速滑翔飞行器气动性能的数值模拟研究[J]. 国防科技大学学报201234(4): 22-27.
  LIU J X, HOU Z X, CHEN X Q, et al. Numerical simulation on the aerodynamic performance of hypersonic glide vehicle[J]. Journal of National University of Defense Technology201234(4): 22-27 (in Chinese).
文章导航

/