随着全球航空出行需求的增长以及科学技术的进步,超声速客机的复兴已成为航空工业的重要发展趋势。为拓展市场需求并实现商业化成功,新一代超声速客机不仅要具备低声爆特性,还应满足客机的主要设计指标。本研究首先验证了流动与声爆数值计算方法,其中包括团队自主开发的远场声爆预测程序,并提出了一种基于目标近场信号的低声爆反设计方法。随后围绕超声速客机商业运营中遇到的挑战,确定了远程超声速客机的主要设计指标,开展了气动布局的选择和参数计算,并运用基于目标截面积的反设计方法获得了一种初始方案。进一步运用基于目标近场信号的反设计方法改进了初始方案的气动外形,具体措施包括中机身反弯设计,以及静音锥和声爆控制鼓包的应用,成功减小了地面声爆。对改进后的方案开展了气动特性评估,发现方案基本满足性能指标,同时识别出纵向气动力非线性强、大迎角航向静稳定性不足、大侧滑角进气畸变强等需要在未来研制过程中关注的问题,为后续优化设计提供了研究平台与方向。
With the growth of people's demand and the progress of science and technology, the return of supersonic passen-ger aircrafts has become a trend. In order to expand the market demand, the new generation of supersonic airliners should have low sonic boom characteristics, and at the same time ensure that the main functions and design specs of the airliners are satisfied. Therefore, an attempt is made to apply a low-boom aerodynamic design to a long-range supersonic airliner and evaluate the aerodynamic characteristics of the scheme. Firstly, the flow and sonic boom calculation methods are verified, including a domestic boom prediction program, and a low-boom inverse design method based on the targeted near-field signals is proposed for the subsequent design. Based on the consideration of past supersonic airliners, the main design specs of long-range supersonic airliners are proposed, and layout se-lection and parameter calculations are carried out to provide constraints for the application of low-boom design. An inverse design method based on targeted cross-sectional area was utilized to obtain an initial solution, which was evaluated and found to have a strong sonic boom. Subsequently, an inverse design method based on targeted near-field signals was applied to improve the aerodynamic shape of the aircraft, specifically including the mid-fuselage curvature, the addition of a quiet spike and a sonic boom control bump, which successfully lower the sonic boom. The aerodynamic characteristics of the resulting configuration were evaluated, and it was found that the con-figuration basically meets the loading and performance specifications, while problems such as weak static stability at large angles of attack, and large intake distortion at large side-slip angles, which need to be paid attention to in the future development, were also identified.
[1] BEA. Accident on 25 July 2000 at La Patte d’Oie in Gonesse (95) to the Concorde registered F-BTSC operated by Air France[R]. Paris: BEA, 2000.
[2] ICAO. ICAO Annual report[R]. Montreal: ICAO, 2020.
[3] WELGE H, NELSON C, BONET J. Supersonic vehicle systems for the 2020 to 2035 timeframe[C]//28th AIAA applied aerodynamics conference. 2010: 4930.
[4] WELGE H R, BONET J, MAGEE T, et al. N+2 Supersonic Concept Development and Systems Integration[R]. NASA/CR-2010-216842, 2010.
[5] MORGENSTERN J, BUONANNO M, YAO J, et al. Advanced concept studies for supersonic commercial transports entering service in the 2018-2020 period phase 2[R]. NASA/CR—2015-218719, 2015.
[6] 张启军, 李明. 洛马静音超声速客机方案分析[J]. 航空动力, 2019 ,2(04):11-14.
[7] 乔建领, 韩忠华, 丁玉临, 等. 基于广义 Burgers 方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674.
[8] 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022 ,43(1): 124916-124916.
[9] 李军府,陈晴,王伟,韩忠华等. 一种先进超声速民机低声爆高效气动布局设计研究[J]. 航空学报, 2024, 45(5): 629613-629613.
[10] 郝璇, 张青青, 苏诚, 等. 考虑配平特性的超声速客机低声爆气动布局优化研究[J]. 航空工程进展, 2023, 15(1): 38-50.
[11] 韩阳, 冷岩, 杨龙, 等. 一类超声速长航程民用客机的气动设计和性能评估[J]. 航空科学技术, 2019, 30(9): 25-32.
[12] 邵琳涛, 别大卫, 丁梦龙, 等. 一种低声爆高升阻比超声速公务机构型: CN118811070A[P]. 2024-10-22.
[13] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635.
[14] BUONANNO M, CHAI S, MARCONI F, et al. Overview of sonic boom reduction efforts on the Lockheed Martin N+ 2 supersonic validations program[C]//32nd AIAA Applied Aerodynamics Conference. 2014: 2138.
[15] CARTER M B, ELMILIGUI A A, PARK M A, et al. Experimental and Computational Study of the X-59 Wind Tunnel Model at Glenn Research Center 8-by 6-foot Supersonic Wind Tunnel[R]. NASA/TM– 20220011496, 2022.
[16] 中国民用航空局. CCAR-121大型飞机公共航空运输承运人运行合格审定规则[S]. 北京: 中国民用航空局, 2024-4-12.
[17] BERTON J J, HUFF D L, GEISELHART K, et al. Supersonic technology concept aeroplanes for environmental studies[C]//AIAA Scitech 2020 Forum. 2020: 0263.
[18] 杨李. 基于客户价值的宽体客机典型航线选择[J]. 民用飞机设计与研究, 2018, 31(4): 20-24.
[19] British Airways. Aerodromes & Performance British Airways. Concorde Preformance manual[M]. British Airways, 1996.
[20] Airbus S.A.S. Airbus Commercial Aircraft AC A350-900-1000[M]. Toulouse: Airbus S.A.S, 2023-02.
[21] Boeing. 787 Airport Compatibility Planning Guide[M]. Arlington: Boeing, 2023-02.
[22] 中国民用航空局. CCAR-25运输类飞机适航标准[S]. 北京: 中国民用航空局, 2011-12-7.
[23] ECONOMON T D, PALACIOS F, COPELAND S R, et al. SU2: An open-source suite for multiphysics simulation and design[J]. Aiaa Journal, 2016, 54(3): 828-846.
[24] SACHDEVA A. Implementation and application of AUSM+-up and AUSM+-up2 schemes in open-source CFD code SU2[C]//21st Annual CFD Symposium. 2019.
[25] PARK M A, CARTER M B. Low-boom demonstrator near-field summary for the third AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2022, 59(3): 563-577.
[26] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[M]. The University of Texas at Austin, 1995.
[27] RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the third AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2022, 59(3): 578-594.
[28] SPURLOCK W M, AFTOSMIS M J, NEMEC M. Cartesian mesh simulations for the third AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2022, 59(3): 708-724.
[29] SAE International. GAS TURBINE ENGINE INLET FLOW DISTORTION GUIDELINES[S]. Warrendale: SAE International, 2017.
[30] SAE International. A Methodology for Assessing Inlet Swirl Distortion[S]. Warrendale: SAE International, 2022.