基于频域双LMS的MFC智能旋翼减振降噪研究

  • 周千千 ,
  • 季宏丽 ,
  • 陶翀骢 ,
  • 吴义鹏 ,
  • 张超 ,
  • 裘进浩
展开
  • 1. 南京航空航天大学航空航天结构力学及控制全国重点实验室
    2. 南京航空航天大学机械结构力学及控制国家重点实验室
    3. 南京航空航天大学,机械结构力学及控制国家重点实验室
    4. 南京航空航天大学

收稿日期: 2024-11-28

  修回日期: 2025-02-26

  网络出版日期: 2025-02-28

基金资助

国家重点研发计划青年科学家项目

Research on vibration damping and noise reduction of MFC intelligent ro-tor based on frequency-domain dual LMS method

  • ZHOU Qian-Qian ,
  • JI Hong-Li ,
  • TAO Chong-Cong ,
  • WU Yi-Peng ,
  • ZHANG Chao ,
  • QIU Jin-Hao
Expand

Received date: 2024-11-28

  Revised date: 2025-02-26

  Online published: 2025-02-28

摘要

在直升机旋翼主动减振降噪技术中,基于压电纤维复合材料(Macro Fiber Composite,MFC)的智能扭转旋翼因不需要任何额外的机械部件成为最有前景的方法之一。目前,大部分基于MFC的主动扭转旋翼(Active Torsion Rotor,ATR)减振降噪技术仍处于理论研究阶段。选用MFC作为驱动器,基于NACA23012翼型的智能扭转旋翼,提出了一种简单双LMS频域自适应HHC控制方法,并在3.4×2.4m开口风洞中进行了振动与噪声主动闭环控制试验。该算法相对于传统的频域HHC算法,单谐波控制时计算量降低了5.5~11倍; 在旋翼转速150~210r/min、风速5~10m/s、旋翼轴倾角0°和8°的不同工况下,控制器可以降低27.24%~58.55%的振动水平;在旋翼转速210r/min、风速10m/s、旋翼轴倾角0°时,控制器可以降低约2.5~3.2dB的噪声水平。

本文引用格式

周千千 , 季宏丽 , 陶翀骢 , 吴义鹏 , 张超 , 裘进浩 . 基于频域双LMS的MFC智能旋翼减振降噪研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31583

Abstract

In helicopter rotor active vibration and noise reduction technology, smart torsional rotors based on Macro Fiber Composite (MFC) are considered one of the most promising methods due to their lack of any additional mechanical components. Currently, most active torsion rotor (ATR) vibration and noise reduction technologies based on MFC are still in the theoret-ical research stage. This paper uses MFC as the actuator and proposes a simple dual least mean square (LMS) frequen-cy-domain adaptive higher harmonic control (HHC) algorithm for the smart torsional rotor based on the NACA23012 air-foil. Vibration and noise active closed-loop control experiments are conducted in a 3.4×2.4m open-circuit wind tunnel. Compared to traditional frequency-domain HHC algorithms, the computational effort for single harmonic control is re-duced by 5.5 to 11 times. Under various conditions, such as rotor speeds from 150 to 210 r/min, wind speeds from 5 to 10 m/s, and rotor shaft tilt angles of 0° and 8°, the controller reduces vibration levels by 27.24% to 58.55%. At a rotor speed of 210 r/min, wind speed of 10 m/s, and rotor shaft tilt angle of 0°, the controller can reduce noise levels by about 2.5 to 3.2 dB.

参考文献

[1]王咏梅.全球民用直升机市场研究与分析[J].江苏科技信息, 2020, 37(17):34-37 [2]杨婧, 詹月玫, 洪彬.世界军用直升机装备现状及发展规划[J].直升机技术, 2020, (3):68-72 [3]田翔, 沈亚娟, 马小艳.旋翼主动控制技术研究[J].中国科技信息, 2019, (3):37-44 [4]EDWARDS B D, COX C, BOOTH E R.Revolutionary Concepts for Helicopter Noise Reduction: SILENT Program: NASA/CR-2002-2111650[R]. National Aeronautics and Space Administration, Langley Research Center, 2002. [5]KESSLER C.Active rotor control for helicopters: motivation and survey on higher harmonic control[J].CEAS Aeronautical Journal, 2011, 1(1):3-22 [6]冯剑波, 陆洋.直升机旋翼桨涡干扰噪声主动控制技术综述[J].噪声与振动控制, 2018, 38(3):1-9 [7]FRIEDMANN P.On-Blade Control of Rotor Vibration,Noise,and Performance: Just Around the Corner? The 33rd Alexander Nikolsky Honorary Lecture[J].Journal of the American Helicopter Society, 2014, 59(4):1-37 [8]KESSLER C.Active rotor control for helicopters: individual blade control and swashplateless rotor designs[J].CEAS Aeronautical Journal, 2011, 1(1):23-54 [9]DIETERICH O, RABOURDIN A, MAURICE J B, et al.Blue Pulse?: active rotor control by trailing edge flaps at airbus helicopters—New EC145 demonstrator and flight test results [C]//Proceedings of the 70th Annual Forum of the American Helicopter Society. Alexandria, VA: American Helicopter Soc. International, 2014:679-702. [10]王潇, 杨一凡, 张硕.直升机振动主动控制方法研究综述[J].电光与控制, 2024, 31(5):1-10 [11]BENT A A, HAGOOD N W.Piezoelectric Fiber Composites with Interdigitated Electrodes[J].Journal of Intelligent Material Systems and Structures, 1997, 8:903-919 [12]VAN D W B G, LIM J W, RIEMENSCHNEIDER J, et al.New smart twisting active rotor (STAR): pretest predictions[J].CEAS Aeronautical Journal, 2024, 15(3):721-750 [13]THAKKAR D, GANGULI R.Active Twist Control of Smart Helicopter Rotor - A Survey[J].Journal of Aerospace Sciences and Technologies, 2023, 57(4):429-448 [14]CHOPRA I.Review of State of Art of Smart Structures and Integrated Systems[J].AIAA Journal, 2002, 40(11):2145-2187 [15]WILBUR M L, WILKIE W K.Active-twist rotor control applications for UAVs[M]. Transformational Science and Technology for the Current and Future Force: World Scientific, 2006: 185-192. [16]WILLIAM K W, ROBERT G B, JAMES W H, et al.Low-cost piezocomposite actuator for structural control applications[C]//Smart structures and materials 2000: industrial and commercial applications of smart structures technologies. SPIE, 2000, 3991: 323-334. [17]HAMED Y S, KANDIL A, MACHADO J T.Utilizing Macro Fiber Composite to Control Rotating Blade Vibrations[J].Symmetry, 2020, 12(12):1984- [18]PAWAR P M, JUNG S N.Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system[J].Smart Materials and Structures, 2008, 17(6):065009- [19]PAWAR P M, JUNG S N.Active twist control methodology for vibration reduction of a helicopter with dissimilar rotor system[J].Smart Materials and Structures, 2009, 18(3):035013- [20]JOHNSON W, UNITED S.Self-tuning regulators for multicyclic control of helicopter vibration[M]. Washington, D.C. : National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1982. [21]RAKOTOMAMONJY T, VU B D.Identification and optimal control methodology for an active twist rotor[J].IFAC Proceedings Volumes, 2010, 43(15):452-457 [22]BRILLANTE C, MORANDINI M, MANTEGAZZA P.Periodic controllers for vibration reduction using actively twisted blades[J].The Aeronautical Journal, 2016, 120(1233):1763-1784 [23]MITURA A, GAWRYLUK J.Experimental and finite element analysis of PPF controller effectiveness in composite beam vibration suppression[J].Eksploatacja i Niezawodno, 2022, 24(3):468-477 [24]GUO Y, YU Y, LI L, et al.Modeling and vibration control of a rotating flexible plate actuated by MFC[J].Composite Structures, 2024, 331:117907- [25]KIM D H, HONG S, JUNG S N.Multicyclic Vibration Control of a Helicopter Rotor with Active Twist Actuation[J].International Journal of Aeronautical and Space Sciences, 2022, 23(2):303-314 [26]FOGARTY D E, WILBUR M, SEKULA M.A computational study of BVI noise reduction using active twist control[C]//American Helicopter Society 66th Annual Forum and Technology Display. Phoenix: American Helicopter Society, 2010, 1: 660-668. [27]FOGARTY D E, WILBUR M, SEKULA M.The effect of non-harmonic active twist actuation on BVI noise[C]//AHS International 67th Annual Forum and Technology Display, 2011, 1: 37-46. [28]ANOBILE A, BERNARDINI G, GENNARETTI M.Active Twist Rotor Controller Identification for Blade-Vortex Interaction Noise Alleviation[C]//19th AIAA/CEAS Aeroacoustics Conference: American Institute of Aeronautics and Astronautics, 2013: 2290. [29]ANOBILE A, BERNARDINI G, GENNARETTI M.Investigation on a High-Frequency Controller for Rotor BVI Noise Alleviation[J].International Journal of Acoustics and Vibration, 2016, 21(3):239-248 [30]ANOBILE A, BERNARDINI G, TESTA C, et al.Synthesis of a Rotor BVI Noise Active Controller Through an Efficient Aerodynamics/Aeroacoustics Solver[C]//20th AIAA/CEAS Aeroacoustics Conference, 2014: 3186. [31]KEATS W W, L.W M, H. M P, et al. Aeroelastic Analysis of the NASA/ARMY/MIT Active Twist Rotor[C]//American Helicopter Society 55th Annual Forum. Montreal, Canada: American Helicopter Society, 1999. [32]CESNIK C E S, SHIN S J, WILKIE W K, et al.Modeling, design, and testing of the NASA/Army/MIT active twist rotor prototype blade[C]//Proceedings of the American Helicopter Society 55th Annual Forum, Montreal, Canada, 1999. [33]WILBUR M L, YEAGER W T, WILKIE W K, et al.Hover testing of the NASA/ARMY/MIT active twist rotor prototype blade[C]//56th American Helicopter Society Annual Forum. Virginia Beach, VA, US: American Helicopter Society, 2000. [34]WILBUR M L, MIRICK P H, YEAGER W T, et al.Vibratory Loads Reduction Testing of the NASAArmyMIT Active Twist Rotor[J].Journal of the American Helicopter Society, 2002, 47(2):123-133 [35]WILBUR M L, YEAGER W T, SEKULA M K.Further examination of the vibratory loads reduction results from the NASA/Army/MIT active twist rotor test[C]//58th American Helicopter Society Annual Forum, 2002. [36]SHIN S, CESNIK C E S, HALL S R.Closed Loop Control Test of the NASAArmyMIT Active Twist Rotor for Vibration Reduction[J].Journal of the American Helicopter Society, 2005, 50(2):178-194 [37]BERNHARD A P F, WONG J.Wind Tunnel Evaluation of a Sikorsky Active Rotor Controller Implemented on the NASAARMYMIT Active Twist Rotor[J].Journal of the American Helicopter Society, 2005, 50(1):65-81 [38]YEAGER W, WILBUR M, NIXON M.Review of Recent Rotorcraft Experimental Investigations in the Langley Transonic Dynamics Tunnel[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2003: 1963. [39]SHIN S, CESNIK C E S, HALL S R.System Identification Technique for Active Helicopter Rotors[J].Journal of Intelligent Material Systems and Structures, 2005, 16(11-12):1025-1038 [40]SHIN S, CESNIK C, HALL S.Control of integral twist-actuated helicopter blades for vibration reduction[C]//AHS International, 58th Annual Forum Proceedings, 2002: 2122-2133. [41]SHIN S, CESNIK C.Helicopter Performance and Vibration Enhancement by Twist-Actuated Blades[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2003: 1818. [42]SHAW J, ALBION N.Active Control of the Helicopter Rotor for Vibration Reduction[J].Journal of the American Helicopter Society, 1981, 26(3):32-39 [43]陈钰, 宗群, 张秀云.直升机旋翼振动主动控制方法研究进展[J].哈尔滨工业大学学报, 2023, 55(8):1-17 [44]SHAW J.Higher harmonic blade pitch control: a system for helicopter vibration reduction[D]. Massachusetts Institute of Technology, 1980. [45]RUBINACCI R, MERAGLIA S, LOVERA M.Continuous time adaptive Higher Harmonic Control[C]//Proceedings of the 2022 CEAS EuroGNC conference, 2022: 1-10. [46]PRECHTL E F.Design and implementation of a piezoelectric servo-flap actuation system for helicopter rotor individual blade control[D]. Massachusetts Institute of Technology, 2000: 177-186. [47]BOOTH E R, Wilbur M L.Acoustic Aspects of Active Twist Rotor Control[J].Journal of the American Helicopter Society, 2004, 49(1):3-10 [48]JACKLIN S A.Comparison of five system identification algorithms for rotorcraft higher harmonic control[R]. NASA/TP-1998-207687, Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1998. [49]PATT D, LIU L, CHANDRASEKAR J, et al.Higher-Harmonic-Control Algorithm for Helicopter Vibration Reduction Revisited[J].Journal of Guidance, Control, and Dynamics, 2005, 28(5):918-930
文章导航

/