融入低声爆设计的超声速民机概念方案多学科优化

  • 杨超 ,
  • 谭玉婷 ,
  • 王伟 ,
  • 李军府 ,
  • 赵彦 ,
  • 余雄庆
展开
  • 1. 南京航空航天大学航空学院
    2. 航空工业第一飞机设计研究院
    3. 中航工业 第一飞机设计研究院
    4. 中航工业第一飞机设计研究院
    5. 航空工业第一飞机设计研究所
    6. 南京航空航天大学

收稿日期: 2024-10-29

  修回日期: 2025-02-25

  网络出版日期: 2025-02-28

Low-boom design based multidisciplinary optimization for supersonic civil aircraft conceptual design

  • YANG Chao ,
  • TAN Yu-Ting ,
  • WANG Wei ,
  • LI Jun-Fu ,
  • ZHAO Yan ,
  • YU Xiong-Qing
Expand

Received date: 2024-10-29

  Revised date: 2025-02-25

  Online published: 2025-02-28

摘要

针对超声速民机概念方案快速分析和优化的需求,提出了一种融入低声爆设计的多学科分析优化策略。该方法主要包括三个步骤:1)确定目标反向等效面积,旨在为多学科优化提供一个低声爆反向等效面积的目标;2)在多学科优化框架下,以机翼和尾翼总体参数为设计变量,获得最大起飞重量轻和目标反向等效面积匹配度高的最优解集;3)基于多学科优化结果,小幅调整机身外形和尾翼参数,进一步逼近目标反向等效面积。在该多学科方法流程中,声爆特性分析仅涉及反向等效面积的计算,计算量大幅度降低,有利于将高精度的声爆预测方法应用于概念设计的多学科优化,而且该方法的架构与现有飞机多学科优化架构相兼容,易于实施。应用本文方法对某中型超声速民机概念方案进行了优化设计。结果表明,该方法能以较少的计算量获得多目标的最优解集。从最优解集中筛选出一个目标反向等效面积匹配度高且最大起飞重量轻的优选方案。该优选方案相比于基准方案,最大起飞重量减少了3.6%,声爆降低了6.62 PLdB。

本文引用格式

杨超 , 谭玉婷 , 王伟 , 李军府 , 赵彦 , 余雄庆 . 融入低声爆设计的超声速民机概念方案多学科优化[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31457

Abstract

Aimed at rapid analysis and optimization in conceptual design of supersonic civil aircraft, this paper presents a multidisciplinary analysis optimization method integrated with low-boom design. The method consists of three main steps: 1) determining the target reversed equivalent area, which aims to provide a low-boom reversed equivalent area distribution target for multidisciplinary optimization; 2) Within the multidisciplinary optimization framework, the overall parameters of the wing and tail are used as design variables to obtain a multiobjective optimal solution set for minimizing maximum takeoff weight and matching equivalent reversed area; 3) Based on the results of multidisciplinary optimization, making minor adjustments to the fuselage shape and tail parameters to further match the tar-get reversed equivalent area distribution. In this multidisciplinary approach, sonic boom characteristics are analyzed exclusively through the calculation of reversed equivalent area, which significantly reduces the computational expense. This enables the application of high-fidelity sonic boom prediction methods during the conceptual design. The method is compatible with existing multidisciplinary optimization frameworks for civil aircraft design, facilitating seamless implementation. The method is applied to the optimization of the medium-sized supersonic civil aircraft conceptual design. Results show that an optimal solution set for the multiple objectives is obtained with less computational expense. An optimal design that has less maximum takeoff weight and highly matches the reversed equivalent area, is selected from the optimal solution set. Its maximum takeoff weight is reduced by 3.6% and sonic boom is reduced by 6.62 PLdB compared to the baseline design.

参考文献

[1] SUN Y C, SMITH H. Review and prospect of supersonic business jet design[J]. Progress in Aerospace Sciences, 2017, 90(4): 12-38. [2] 余雄庆. 飞机总体多学科设计优化的现状与发展方向[J]. 南京航空航天大学学报, 2008, 40(4): 417-426. YU X Q. Multidisciplinary design optimization for air-craft conceptual and preliminary design:status and di-rections[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 417-426 (in Chinese). [3] WALSH J L, TOWNSEND J C, SALAS A O, et al. Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles, part 1: formulation[R]. Reston, VA: AIAA, 2000. [4] WALSH J L, WESTON R P, SAMAREH J A, et al. Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles, part 2: preliminary results[R]. Reston, VA: AIAA, 2000. [5] KROO I, MANNING V. Collaborative optimization: status and directions[R]. Reston, VA: AIAA, 2000. [6] MANNING V. Large-scale design of supersonic aircraft via collaborative optimization[D]. Palo Alto: Stanford University, 1999: 22-32. [7] MACMILIN P E, GOLOVIDOV O, MASON W H, et al. An MDO investigation of the impact of practical con-straints on an HSCT configuration[R]. Reston, VA: AIAA, 1997. [8] HOSDER S, WATSON L T, GROSSMAN B, et al. Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport[J]. Optimization and Engineering, 2001, 2(4): 431-452. [9] FENWICK S V, HARRIS J C, DEAN S R H. Multidis-ciplinary optimisation to assess the impact of cruise speed on HSCT performance[R]. Reston, VA: AIAA, 2004. [10] LABAN M, HERRMANN U. Multi-disciplinary analy-sis and optimisation applied to supersonic aircraft part 1: analysis tools[R]. Reston, VA: AIAA, 2007. [11] SCHUERMANN M, GAFFURI M, HORST P. Multi-disciplinary pre-design of supersonic aircraft[J]. CEAS Aeronautical Journal, 2014, 6(2): 207-216. [12] CHOI S, ALONSO J, KROO I. Multifidelity design optimization of low-boom supersonic jets[J]. Journal of Aircraft, 2008, 45(1): 106-118. [13] BREZILLON J, CARRIER G, LABAN M. Multidisci-plinary optimization of supersonic aircraft including low-boom considerations[J]. Journal of Mechanical Design, 2011, 133(10): 105001. [14] SUN Y C, SMITH H. Low-boom low-drag optimization in a multidisciplinary design analysis optimization envi-ronment[J]. Aerospace Science and Technology, 2019, 94(1): 105387. [15] Li W, RALLABHANDI S. Inverse design of low-boom supersonic concepts using reversed equivalent-area tar-gets[J]. Journal of Aircraft, 2014, 51(1): 29-36. [16] Li W, GEISELHART K. Multidisciplinary design opti-mization of low-boom supersonic aircraft with mission constraints[J]. AIAA Journal, 2021, 59(1): 165-179. [17] Li W, GEISELHART K. Multi-objective, multidisccipli-nary optimization of low-boom supersonic transports us-ing multifidelity models[J]. Journal of Aircraft, 2022, 59(5): 1137-1151. [18] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310. DING Y L, HAN Z H, QIAO J L, et al. Research pro-gress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626310 (in Chinese). [19] 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 025649. ZHANG L W, SONG W P, HAN Z H, et al. Recent pro-gress of sonic boom generation , propagation, and miti-gation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025649 (in Chinese). [20] WHITHAM G B. The flow pattern of a supersonic pro-ject[J]. Communications on Pure and Applied Mathemat-ics, 1952, 5(3): 301-347. [21] WHITHAM G B. The behavior of supersonic flow past a body of revolution far from the axis[J]. Proceedings of the Royal Society, 1950, A201(1064): 89-109. [22] WALKDEN F. The shock pattern of a wing-body com-bination, far from the flight path[J]. Aeronautical Quar-terly, 1958, IX(2):164-194. [23] GEORGE A R. Reduction of sonic boom by azimuthal redistribution of overpressure[J]. AIAA Journal, 1969, 7(2): 291-298. [24] AFTOSMIS M, BERGER M, ADOMAVICIUS G. A parallel multilevel method for adaptively refined cartesian grids with embedded boundaries[R]. Reston, VA: AIAA, 2000. [25] CASTNER R. Analysis of exhaust plume effects on sonic boom for a 59-degree wing body model[R]. Reston, VA: AIAA, 2011. [26] KIRZ J. DLR TAU simulations for the third aiaa sonic boom prediction workshop near-field cases[R]. Reston, VA: AIAA, 2011. [27] PARK M A, NEMEC M. Nearfield summary and statis-tical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 851-875. [28] ANDERSON G R, AFTOSMIS M J, NEMEC M. Cart3D simulations for the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 896-911. [29] 顾奕然, 黄江涛, 陈树生, 等. 基于逆向增广Burgers方程的声爆反演技术[J]. 航空学报, 2023, 44(2): 626258. GU Y R, HUANG J T, CHEN S S, et al. Sonic boom inversion technology based on inverse augmented Burg-ers equation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626258 (in Chinese). [30] JONES L B. Lower bounds for sonic bangs[J]. The Aeronautical Journal, 1961, 65(606): 433-436. [31] SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651-653. [32] GEORGE A R. Lower bounds for sonic booms in the midfield[J]. AIAA Journal, 1969, 7(8): 1542-1545. [33] DARDEN C M. Sonic-boom minimization with nose bluntness relaxation: NASA TP-1348[R]. Reston, VA: NASA, 1979. [34] DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift con-straint[J]. AIAA Journal, 2023, 61(7): 2840-2853. [35] PLOTKIN K J, RALLABHANDI S K, Li W. General-ized formulation and extension of sonic boom minimiza-tion theory for front and aft shaping[R]. Reston, VA: AIAA, 2009. [36] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995: 75-117. [37] STEVENS S. Perceived level of noise by Mark VII and decibels(E)[J]. The Journal of the Acoustical Society of America, 1972, 51(2): 575-601. [38] RALLABHANDI S K. Advanced sonic boom predic-tion using the augmented burgers equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253. [39] FORRESTER A, SOBESTER A, KEANE A. Engineer-ing design via surrogate modelling: a practical guide[M]. Chichester: John Wiley & Sons, 2008: 33-59. [40] BOOKER A J, DENNIS J J, FRANK P D, et al. A rig-orous framework for optimization of expensive func-tions by surrogates[J]. Structural Optimization, 1998, 17(1): 1-13. [41] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. [42] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [43] 范周伟. 基于模型的客机需求定义与概念设计一体化研究[D]. 南京: 南京航空航天大学, 2022: 99-100. FAN Z W. Model-based integration of requirements def-inition and conceptual design for commercial aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2022: 99-100 (in Chinese). [44] MATTINGLY J D, HEISER W H, DALEY D H. Air-craft engine design[M]. 2nd ed. Reston, VA: AIAA, 2002: 38-39. [45] 高永, 朱飞翔, 李冰,等. 改进CST方法在翼型优化设计中的应用[J]. 海军航空工程学院学报, 2017, 032(005): 426-430. GAO Y, ZHU F X, LI B, et al. Application of improved CST parametric method in airfoil design[J]. Journal of Naval Aeronautical and Astronautical University, 2017, 032(005): 426-430 (in Chinese). [46] AFTOSMIS M J, BERGER M J, MELTON J E. Ro-bust and efficient Cartesian mesh generation for compo-nent-based geometry[J]. AIAA journal, 1998, 36(6): 952-960. [47] RAYMER D P. Aircraft design: a conceptual approach [M]. 6th ed. Reston, VA: AIAA, 2018: 389-452. [48] JONES R T. Theory of Wing-Body Drag at Supersonic Speeds: NACA-TR-1284[R]. Reston, VA: NASA, 1956. [49] 韩阳, 冷岩, 杨龙, 等. 一类超声速长航程民用客机的气动设计和性能评估[J]. 航空科学技术, 2019, 30(9): 25-32. HAN Y, LENG Y, YANG L, et al. Aerodynamic design and evaluation of a type of supersonic long-range civil transport[J]. Aeronautical Science & Technology, 2019, 30(9): 25-32 (in Chinese). [50] HOWE D. Aircraft conceptual design synthesis[M]. London: Professional Engineering Pub, 2000: 153-164. [51] JENKINSON L R, SIMPKIN P, RHODES D. Civil Jet Aircraft Design[M]. Washington, DC: American Insti-tute of Aeronautics and Astronautics, 1999: 147-148. [52] WELGE H R, BONET J, MAGEE T, et al. N+3 Ad-vanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Pe-riod: NASA/CR–2011-217084[R]. Reston, VA: AIAA, 2011. [53] 张帅, 余雄庆. 客机航线性能分析的分段解析方法[J]. 飞行力学, 2012(06): 502-506. ZHANG S, YU X Q. Piecewise analytic model for en-route performance of airliners[J]. FLIGHT DYNAM-ICS, 2012(06): 502-506 (in Chinese). [54] SCHULTE P, SCHLAGER H, ZIEREIS H, et al. NOx Emission Indices of Subsonic Long-Range Jet Aircraft at Cruise Altitude: In Situ Measurements and Predic-tions[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D17): 21431-21442. [55] FUSARO R, VIOLA N, GALASSINI D. Sustainable Supersonic Fuel Flow Method: An Evolution of the Boeing Fuel Flow Method for Supersonic Aircraft Us-ing Sustainable Aviation Fuels[J]. Aerospace, 2021, 8(11): 331.
文章导航

/