[1] SUN Y C, SMITH H. Review and prospect of supersonic business jet design[J]. Progress in Aerospace Sciences, 2017, 90(4): 12-38.
[2] 余雄庆. 飞机总体多学科设计优化的现状与发展方向[J]. 南京航空航天大学学报, 2008, 40(4): 417-426.
YU X Q. Multidisciplinary design optimization for air-craft conceptual and preliminary design:status and di-rections[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 417-426 (in Chinese).
[3] WALSH J L, TOWNSEND J C, SALAS A O, et al. Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles, part 1: formulation[R]. Reston, VA: AIAA, 2000.
[4] WALSH J L, WESTON R P, SAMAREH J A, et al. Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles, part 2: preliminary results[R]. Reston, VA: AIAA, 2000.
[5] KROO I, MANNING V. Collaborative optimization: status and directions[R]. Reston, VA: AIAA, 2000.
[6] MANNING V. Large-scale design of supersonic aircraft via collaborative optimization[D]. Palo Alto: Stanford University, 1999: 22-32.
[7] MACMILIN P E, GOLOVIDOV O, MASON W H, et al. An MDO investigation of the impact of practical con-straints on an HSCT configuration[R]. Reston, VA: AIAA, 1997.
[8] HOSDER S, WATSON L T, GROSSMAN B, et al. Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport[J]. Optimization and Engineering, 2001, 2(4): 431-452.
[9] FENWICK S V, HARRIS J C, DEAN S R H. Multidis-ciplinary optimisation to assess the impact of cruise speed on HSCT performance[R]. Reston, VA: AIAA, 2004.
[10] LABAN M, HERRMANN U. Multi-disciplinary analy-sis and optimisation applied to supersonic aircraft part 1: analysis tools[R]. Reston, VA: AIAA, 2007.
[11] SCHUERMANN M, GAFFURI M, HORST P. Multi-disciplinary pre-design of supersonic aircraft[J]. CEAS Aeronautical Journal, 2014, 6(2): 207-216.
[12] CHOI S, ALONSO J, KROO I. Multifidelity design optimization of low-boom supersonic jets[J]. Journal of Aircraft, 2008, 45(1): 106-118.
[13] BREZILLON J, CARRIER G, LABAN M. Multidisci-plinary optimization of supersonic aircraft including low-boom considerations[J]. Journal of Mechanical Design, 2011, 133(10): 105001.
[14] SUN Y C, SMITH H. Low-boom low-drag optimization in a multidisciplinary design analysis optimization envi-ronment[J]. Aerospace Science and Technology, 2019, 94(1): 105387.
[15] Li W, RALLABHANDI S. Inverse design of low-boom supersonic concepts using reversed equivalent-area tar-gets[J]. Journal of Aircraft, 2014, 51(1): 29-36.
[16] Li W, GEISELHART K. Multidisciplinary design opti-mization of low-boom supersonic aircraft with mission constraints[J]. AIAA Journal, 2021, 59(1): 165-179.
[17] Li W, GEISELHART K. Multi-objective, multidisccipli-nary optimization of low-boom supersonic transports us-ing multifidelity models[J]. Journal of Aircraft, 2022, 59(5): 1137-1151.
[18] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310.
DING Y L, HAN Z H, QIAO J L, et al. Research pro-gress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626310 (in Chinese).
[19] 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 025649.
ZHANG L W, SONG W P, HAN Z H, et al. Recent pro-gress of sonic boom generation , propagation, and miti-gation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025649 (in Chinese).
[20] WHITHAM G B. The flow pattern of a supersonic pro-ject[J]. Communications on Pure and Applied Mathemat-ics, 1952, 5(3): 301-347.
[21] WHITHAM G B. The behavior of supersonic flow past a body of revolution far from the axis[J]. Proceedings of the Royal Society, 1950, A201(1064): 89-109.
[22] WALKDEN F. The shock pattern of a wing-body com-bination, far from the flight path[J]. Aeronautical Quar-terly, 1958, IX(2):164-194.
[23] GEORGE A R. Reduction of sonic boom by azimuthal redistribution of overpressure[J]. AIAA Journal, 1969, 7(2): 291-298.
[24] AFTOSMIS M, BERGER M, ADOMAVICIUS G. A parallel multilevel method for adaptively refined cartesian grids with embedded boundaries[R]. Reston, VA: AIAA, 2000.
[25] CASTNER R. Analysis of exhaust plume effects on sonic boom for a 59-degree wing body model[R]. Reston, VA: AIAA, 2011.
[26] KIRZ J. DLR TAU simulations for the third aiaa sonic boom prediction workshop near-field cases[R]. Reston, VA: AIAA, 2011.
[27] PARK M A, NEMEC M. Nearfield summary and statis-tical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 851-875.
[28] ANDERSON G R, AFTOSMIS M J, NEMEC M. Cart3D simulations for the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 896-911.
[29] 顾奕然, 黄江涛, 陈树生, 等. 基于逆向增广Burgers方程的声爆反演技术[J]. 航空学报, 2023, 44(2): 626258.
GU Y R, HUANG J T, CHEN S S, et al. Sonic boom inversion technology based on inverse augmented Burg-ers equation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626258 (in Chinese).
[30] JONES L B. Lower bounds for sonic bangs[J]. The Aeronautical Journal, 1961, 65(606): 433-436.
[31] SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651-653.
[32] GEORGE A R. Lower bounds for sonic booms in the midfield[J]. AIAA Journal, 1969, 7(8): 1542-1545.
[33] DARDEN C M. Sonic-boom minimization with nose bluntness relaxation: NASA TP-1348[R]. Reston, VA: NASA, 1979.
[34] DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift con-straint[J]. AIAA Journal, 2023, 61(7): 2840-2853.
[35] PLOTKIN K J, RALLABHANDI S K, Li W. General-ized formulation and extension of sonic boom minimiza-tion theory for front and aft shaping[R]. Reston, VA: AIAA, 2009.
[36] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995: 75-117.
[37] STEVENS S. Perceived level of noise by Mark VII and decibels(E)[J]. The Journal of the Acoustical Society of America, 1972, 51(2): 575-601.
[38] RALLABHANDI S K. Advanced sonic boom predic-tion using the augmented burgers equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253.
[39] FORRESTER A, SOBESTER A, KEANE A. Engineer-ing design via surrogate modelling: a practical guide[M]. Chichester: John Wiley & Sons, 2008: 33-59.
[40] BOOKER A J, DENNIS J J, FRANK P D, et al. A rig-orous framework for optimization of expensive func-tions by surrogates[J]. Structural Optimization, 1998, 17(1): 1-13.
[41] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492.
[42] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[43] 范周伟. 基于模型的客机需求定义与概念设计一体化研究[D]. 南京: 南京航空航天大学, 2022: 99-100.
FAN Z W. Model-based integration of requirements def-inition and conceptual design for commercial aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2022: 99-100 (in Chinese).
[44] MATTINGLY J D, HEISER W H, DALEY D H. Air-craft engine design[M]. 2nd ed. Reston, VA: AIAA, 2002: 38-39.
[45] 高永, 朱飞翔, 李冰,等. 改进CST方法在翼型优化设计中的应用[J]. 海军航空工程学院学报, 2017, 032(005): 426-430.
GAO Y, ZHU F X, LI B, et al. Application of improved CST parametric method in airfoil design[J]. Journal of Naval Aeronautical and Astronautical University, 2017, 032(005): 426-430 (in Chinese).
[46] AFTOSMIS M J, BERGER M J, MELTON J E. Ro-bust and efficient Cartesian mesh generation for compo-nent-based geometry[J]. AIAA journal, 1998, 36(6): 952-960.
[47] RAYMER D P. Aircraft design: a conceptual approach [M]. 6th ed. Reston, VA: AIAA, 2018: 389-452.
[48] JONES R T. Theory of Wing-Body Drag at Supersonic Speeds: NACA-TR-1284[R]. Reston, VA: NASA, 1956.
[49] 韩阳, 冷岩, 杨龙, 等. 一类超声速长航程民用客机的气动设计和性能评估[J]. 航空科学技术, 2019, 30(9): 25-32.
HAN Y, LENG Y, YANG L, et al. Aerodynamic design and evaluation of a type of supersonic long-range civil transport[J]. Aeronautical Science & Technology, 2019, 30(9): 25-32 (in Chinese).
[50] HOWE D. Aircraft conceptual design synthesis[M]. London: Professional Engineering Pub, 2000: 153-164.
[51] JENKINSON L R, SIMPKIN P, RHODES D. Civil Jet Aircraft Design[M]. Washington, DC: American Insti-tute of Aeronautics and Astronautics, 1999: 147-148.
[52] WELGE H R, BONET J, MAGEE T, et al. N+3 Ad-vanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Pe-riod: NASA/CR–2011-217084[R]. Reston, VA: AIAA, 2011.
[53] 张帅, 余雄庆. 客机航线性能分析的分段解析方法[J]. 飞行力学, 2012(06): 502-506.
ZHANG S, YU X Q. Piecewise analytic model for en-route performance of airliners[J]. FLIGHT DYNAM-ICS, 2012(06): 502-506 (in Chinese).
[54] SCHULTE P, SCHLAGER H, ZIEREIS H, et al. NOx Emission Indices of Subsonic Long-Range Jet Aircraft at Cruise Altitude: In Situ Measurements and Predic-tions[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D17): 21431-21442.
[55] FUSARO R, VIOLA N, GALASSINI D. Sustainable Supersonic Fuel Flow Method: An Evolution of the Boeing Fuel Flow Method for Supersonic Aircraft Us-ing Sustainable Aviation Fuels[J]. Aerospace, 2021, 8(11): 331.