基于双尺度损伤理论的高温装备寿命设计方法

  • 李凯尚 ,
  • 范浩奇 ,
  • 王润梓 ,
  • 张显程 ,
  • 涂善东
展开
  • 1. 华东理工大学机械与动力工程学院
    2. 华东理工大学

收稿日期: 2024-12-24

  修回日期: 2025-02-22

  网络出版日期: 2025-02-25

基金资助

国家重点研发计划;国家自然科学基金;博士后创新人才支持计划

Life Design Method of High-Temperature Equipment based on Dual-Scale Damage Theory

  • LI Kai-Shang ,
  • FAN Hao-Qi ,
  • WANG Run-Zi ,
  • ZHANG Xian-Cheng ,
  • TU Shan-Dong
Expand

Received date: 2024-12-24

  Revised date: 2025-02-22

  Online published: 2025-02-25

摘要

高温结构的长寿命安全运行与严苛服役环境之间的矛盾日益突出,蠕变—疲劳交互损伤日渐凸显导致航空发动机高温部件故障率居高不下。此外,在碳中和背景下对发电机组深度调峰的迫切需求,使得火电、燃机等高温关重件同样面临着缺乏精准的寿命评估方法的问题。基于单一尺度或单一参量的寿命设计方法无法同时考虑高温结构宏观多轴应力效应和微观组织演化历程,尤其对于微观组织不均匀的结构。因此,本文系统介绍了基于宏观连续介质—微观晶体塑性的双尺度建模方法,以含孔结构为例介绍了基于双尺度损伤理论的寿命预测方法,为了服务于双尺度理论体系的工程化应用,开发了一套考虑材料表面强化效应的蠕变—疲劳寿命预测软件,以实现表面强化高温结构的快速损伤评定及寿命预测。

本文引用格式

李凯尚 , 范浩奇 , 王润梓 , 张显程 , 涂善东 . 基于双尺度损伤理论的高温装备寿命设计方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31706

Abstract

The contradiction between the long-term safe operation of high-temperature structures and harsh service environment is becoming increasingly prominent. Creep-fatigue interaction damage has become increasingly prominent, leading to high failure rates of high-temperature components. In addition, the urgent demand for deep peak shaving in power generation units under carbon neutrality targets means that the critical high-temperature components face a lack of accurate life assessment methods. Traditional life design approaches based on single-scale or single-parameter are insufficient to sim-ultaneously account for multi-axial stress effects and microstructural evolution in high-temperature structures, especially for the structures with inhomogeneous microstructures. In this paper, dual-scale modeling approach based on macro-continuum mechanics and micro-crystal plasticity is systematically introduced. Taking hole structure as an example, a life prediction method based on the dual-scale damage theory is presented. To facilitate the engineering application of the dual-scale theoretical framework, a creep-fatigue life prediction software considering surface strengthening effects is developed, enabling rapid damage assessment and life prediction for surface strengthening structures.

参考文献

[1]陈波, 李付国, 何敏. 延性金属材料损伤变量的实验表征方法研究 [J]. 稀有金属材料与工程, 2011, 40(11): 2022-2025.
[2]Sun L, Zhang X-C, Wang R-Z, Wang X-W, Tu S-T, Suzuki K, Miura H. Evaluation of fatigue and creep-fatigue damage levels on the basis of engineering damage mechanics approach [J]. International Journal of Fatigue, 2023, 166: 107277.
[3]涂善东, 王正东, 陈建钧, 巩建鸣. 基于结构弱点分析的高温构件延寿修复技术 [J]. 压力容器, 2004, 21(9): 8.
[4]Ju Y-B, Koyama M, Sawaguchi T, Tsuzaki K, Noguchi H. Effects of ε-martensitic transformation on crack tip deformation, plastic damage accumulation, and slip plane cracking associated with low-cycle fatigue crack growth [J]. International Journal of Fatigue, 2017, 103: 533-545.
[5]Long X, Chong K, Su Y, Chang C, Zhao L. Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method [J]. International Journal of Fatigue, 2023, 175: 107778.
[6]孙李刚, 凌超, 陈浩, 李东风. 结构完整性分析中的多尺度力学方法 [J]. 机械工程学报, 2021, 57(16): 16.
[7]Briffod F, Shiraiwa T, Enoki M. Microstructure modeling and crystal plasticity simulations for the evaluation of fatigue crack initiation in α-iron specimen including an elliptic defect [J]. Materials Science and Engineering: A, 2017, 695: 165-177.
[8]Dong Y, Zhu Y, Wu F, Yu C. A dual-scale elasto-viscoplastic constitutive model of metallic materials to describe thermo-mechanically coupled monotonic and cyclic deformations [J]. International Journal of Mechanical Sciences, 2022, 224: 107332.
[9]Mcdowell DL, Dunne FPE. Microstructure-sensitive computational modeling of fatigue crack formation [J]. International Journal of Fatigue, 2010, 32(9): 1521-1542.
[10]Sajuri ZB, Miyashita Y, Hosokai Y, Mutoh Y. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys [J]. International Journal of Mechanical Sciences, 2006, 48(2): 198-209.
[11]Zhang Y, Li X, Yuan S, Sun R, Sakai T, Lashari MI, Hamid U, Li W. High-cycle-fatigue properties of selective-laser-melted AlSi10Mg with multiple building directions [J]. International Journal of Mechanical Sciences, 2022, 224: 107336.
[12]Chen B, Jiang J, Dunne FPE. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. International Journal of Plasticity, 2018, 101: 213-229.
[13]Zhao N, Wang W, Liu Y. Intergranular mechanical behavior in a blade groove-like component by crystal plasticity model with cohesive zone model [J]. Engineering Fracture Mechanics, 2018, 201: 196-213.
[14]Tinga T, Brekelmans W, Geers M. Application of a multiscale constitutive framework to real gas turbine components; proceedings of the Advanced materials research, F, 2011 [C]. Trans Tech Publ.
[15]Wang R-Z, Gu H-H, Zhu S-P, Li K-S, Wang J, Wang X-W, Hideo M, Zhang X-C, Tu S-T. A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures [J]. Reliability Engineering & System Safety, 2022: 108523.
[16]Gu H-H, Wang R-Z, Zhu S-P, Wang X-W, Wang D-M, Zhang G-D, Fan Z-C, Zhang X-C, Tu S-T. Machine learning assisted probabilistic creep-fatigue damage assessment [J]. International Journal of Fatigue, 2022, 156: 106677.
[17]Coffin LF, Tavernelli JF. The cyclic straining and fatigue of metals [J]. Trans Metall Soc AIME, 1959, 215(5): 794-807.
[18]Manson SS, Dolan TJ. Thermal Stress and Low Cycle Fatigue [J]. Journal of Applied Mechanics, 1966, 33(4): 957-957.
[19]Ostergren W. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue [J]. Journal of Testing and Evaluation, 1976, 4(5): 327-339.
[20]Chaboche JL, Lesne PM. A NON-LINEAR CONTINUOUS FATIGUE DAMAGE MODEL [J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1): 1-17.
[21]Shang D-G, Yao W-X. A nonlinear damage cumulative model for uniaxial fatigue [J]. International Journal of Fatigue, 1999, 21(2): 187-194.
[22]Naderi M, Khonsari MM. An experimental approach to low-cycle fatigue damage based on thermodynamic entropy [J]. International Journal of Solids and Structures, 2010, 47(6): 875-880.
[23]Kachanov LM. Rupture Time Under Creep Conditions [J]. International Journal of Fracture, 1999, 97(1): 11-18.
[24]Rabotnov Y. Creep Problem in Structural Members [J]. 1969.
[25]Betten J, Sklepus S, Zolochevsky A. A creep damage model for initially isotropic materials with different properties in tension and compression [J]. Engineering Fracture Mechanics, 1998, 59(5): 623-641.
[26]Zhang L, Liu Y, Yang Q. A creep model with damage based on internal variable theory and its fundamental properties [J]. Mechanics of Materials, 2014, 78: 44-55.
[27]Sosnin OV, Gorev BV, Rubanov VV. Energy variant of theory of creep [J]. Strength of Materials, 1976, 8(11): 1261-1266.
[28]王润梓. 基于能量密度耗散准则的蠕变—疲劳寿命预测模型及应用 [D]; 华东理工大学, 2019.
[29]Wen J-F, Tu S-T, Xuan F-Z, Zhang X-W, Gao X-L. Effects of Stress Level and Stress State on Creep Ductility: Evaluation of Different Models [J]. Journal of Materials Science & Technology, 2016, 32(8): 695-704.
[30]Hales R. THE ROLE OF CAVITY GROWTH MECHANISMS IN DETERMINING CREEP-RUPTURE UNDER MULTIAXIAL STRESSES [J]. Fatigue & Fracture of Engineering Materials & Structures, 1994, 17(5): 579-591.
[31]Takahashi Y. Further Evaluation of Creep-Fatigue Life Prediction Methods for Low-Carbon Nitrogen-Added 316 Stainless Steel [J]. Journal of Pressure Vessel Technology, 1999, 121(2): 142-148.
[32]Wang R-Z, Zhang X-C, Tu S-T, Zhu S-P, Zhang C-C. A modified strain energy density exhaustion model for creep–fatigue life prediction [J]. International Journal of Fatigue, 2016, 90: 12-22.
[33]Wang R-Z, Zhang X-C, Gong J-G, Zhu X-M, Tu S-T, Zhang C-C. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650°C based on cycle-by-cycle concept [J]. International Journal of Fatigue, 2017, 97: 114-123.
[34]Wang R-Z, Wang J, Gong J-G, Zhang X-C, Tu S-T, Zhang C-c. Creep-Fatigue Behaviors and Life Assessments in Two Nickel-Based Superalloys [J]. Journal of Pressure Vessel Technology, 2018, 140: 031405.
[35]Sangid MD. The physics of fatigue crack initiation [J]. International Journal of Fatigue, 2013, 57: 58-72.
[36]Polák J. Role of Persistent Slip Bands and Persistent Slip Markings in Fatigue Crack Initiation in Polycrystals [J/OL] 2023, 13(2):10.3390/cryst13020220
[37]Luká? P, Kunz ? L. Role of persistent slip bands in fatigue [J]. Philos Mag, 2004, 84(3-5): 317-330.
[38]Hsiung LM, Stoloff NS. A point defect model for fatigue crack initiation in Ni3Al+B single crystals [J]. Acta Metallurgica et Materialia, 1990, 38(6): 1191-1200.
[39]Sangid MD, Maier HJ, Sehitoglu H. A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals [J]. Acta Materialia, 2011, 59(1): 328-341.
[40]Bennett VP, Mcdowell DL. Polycrystal orientation distribution effects on microslip in high cycle fatigue [J]. International Journal of Fatigue, 2003, 25(1): 27-39.
[41]Hallberg H, ?s SK, Skallerud B. Crystal plasticity modeling of microstructure influence on fatigue crack initiation in extruded Al6082-T6 with surface irregularities [J]. International Journal of Fatigue, 2018, 111: 16-32.
[42]Gu T, Stopka KS, Xu C, Mcdowell DL. Prediction of maximum fatigue indicator parameters for duplex Ti–6Al–4V using extreme value theory [J]. Acta Materialia, 2020, 188: 504-516.
[43]Mcdowell DL. Microstructure-Sensitive Computational Fatigue Analysis [M]//YIP S. Handbook of Materials Modeling: Methods. Dordrecht; Springer Netherlands. 2005: 1193-1214.
[44]Manonukul A, Dunne FPE. High- and Low-Cycle Fatigue Crack Initiation Using Polycrystal Plasticity [J]. Mathematical, Physical and Engineering Sciences, 2004, 460: 1881-1903.
[45]Cruzado A, Lucarini S, Llorca J, Segurado J. Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline Inconel 718 [J]. International Journal of Fatigue, 2018, 113: 236-245.
[46]Cruzado A, Lucarini S, Llorca J, Segurado J. Microstructure-based fatigue life model of metallic alloys with bilinear Coffin-Manson behavior [J]. International Journal of Fatigue, 2018, 107: 40-48.
[47]Hull D, Rimmer DE. The growth of grain-boundary voids under stress [J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1959, 4(42): 673-687.
[48]Roodposhti PS, Sarkar A, Murty KL, Brody H, Scattergood R. Grain boundary sliding mechanism during high temperature deformation of AZ31 Magnesium alloy [J]. Materials Science and Engineering: A, 2016, 669: 171-177.
[49]Needleman A, Rice JR. OVERVIEW NO. 9 - PLASTIC CREEP FLOW EFFECTS IN THE DIFFUSIVE CAVITATION OF GRAIN BOUNDARIES [M]//ASHBY M F, BROWN L M. Perspectives in Creep Fracture. Pergamon. 1983: 107-124.
[50]Needleman A, Asaro RJ, Lemonds J, Peirce D. Finite element analysis of crystalline solids [J]. Computer Methods in Applied Mechanics and Engineering, 1985, 52(1): 689-708.
[51]Zhang W, Wang X, Wang Y, Yu X, Gao Y, Feng Z. Type IV failure in weldment of creep resistant ferritic alloys: II. Creep fracture and lifetime prediction [J]. J Mech Phys Solids, 2020, 134: 103775.
[52]Needham NG, Gladman T. Nucleation and growth of creep cavities in a Type 347 steel [J]. Metal Science, 1980, 14(2): 64-72.
[53]Wen J-F, Srivastava A, Benzerga A, Tu S-T, Needleman A. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading [J]. J Mech Phys Solids, 2017, 108: 68-84.
[54]Holdsworth S. Creep-Fatigue Failure Diagnosis [J]. Materials (Basel), 2015, 8(11): 7757-7769.
[55]Qu S, An XH, Yang HJ, Huang CX, Yang G, Zang QS, Wang ZG, Wu SD, Zhang ZF. Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing [J]. Acta Materialia, 2009, 57(5): 1586-1601.
[56]Yang X, Xi Y, He C, Chen H, Zhang X, Tu S. Chemical short-range order strengthening mechanism in CoCrNi medium-entropy alloy under nanoindentation [J]. Scripta Materialia, 2022, 209: 114364.
[57]Venkataraman A, Sangid MD. A crystal plasticity model with an atomistically informed description of grain boundary sliding for improved predictions of deformation fields [J]. Computational Materials Science, 2021, 197: 110589.
[58]Zhao Y, Song Q, Ji H, Cai W, Liu Z, Cai Y. Multi-scale modeling method for polycrystalline materials considering grain boundary misorientation angle [J]. Materials & Design, 2022, 221: 110998.
[59]Li D-F, Barrett RA, O'donoghue PE, O'dowd NP, Leen SB. A multi-scale crystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature [J]. J Mech Phys Solids, 2017, 101: 44-62.
[60]Goh CH, Wallace JM, Neu RW, Mcdowell DL. Polycrystal plasticity simulations of fretting fatigue [J]. International Journal of Fatigue, 2001, 23: 423-435.
[61]Musinski WD, Mcdowell DL. Microstructure-sensitive probabilistic modeling of HCF crack initiation and early crack growth in Ni-base superalloy IN100 notched components [J]. International Journal of Fatigue, 2012, 37: 41-53.
[62]Shangguan W-B, Lu Z-H. Experimental study and simulation of a hydraulic engine mount with fully coupled fluid–structure interaction finite element analysis model [J]. Computers & Structures, 2004, 82(22): 1751-1771.
[63]Zhu S-P, Liu Q, Peng W, Zhang X-C. Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks [J]. International Journal of Mechanical Sciences, 2018, 142-143: 502-517.
[64]Hu G, Huang S, Lu D, Zhong X, Li Z, Brocks W, Zhang K. Subsequent yielding of polycrystalline aluminum after cyclic tension–compression analyzed by experiments and simulations [J]. International Journal of Solids and Structures, 2015, 56-57: 142-153.
[65]Meade ED, Sun F, Tiernan P, O'dowd NP. A multiscale experimentally-based finite element model to predict microstructure and damage evolution in martensitic steels [J]. International Journal of Plasticity, 2021, 139: 102966.
[66]Meade ED, Sun F, Tiernan P, O’dowd NP. Experimental study and multiscale modelling of the high temperature deformation of tempered martensite under multiaxial loading [J]. Materials Science and Engineering: A, 2018, 737: 383-392.
[67]Jacob A, Mehmanparast A. Sensitivity Analysis of Material Microstructure Effects on Predicted Crack Paths Using Finite Element Simulations [J]. Journal of Multiscale Modelling, 2016, 07(02): 1650003.
[68]Owolabi GM, Prasannavenkatesan R, Mcdowell DL. Probabilistic framework for a microstructure-sensitive fatigue notch factor [J]. International Journal of Fatigue, 2010, 32(8): 1378-1388.
[69]Zhao Q, Abdel Wahab M, Ling Y, Liu Z. Fatigue crack propagation within Al-Cu-Mg single crystals based on crystal plasticity and XFEM combined with cohesive zone model [J]. Materials & Design, 2021, 210: 110015.
[70]Han Q-N, Qiu W, He Z, Su Y, Ma X, Shi H-J. The effect of crystal orientation on fretting fatigue crack formation in Ni-based single-crystal superalloys: In-situ SEM observation and crystal plasticity finite element simulation [J]. Tribology International, 2018, 125: 209-219.
[71]Shang X, Zhang H, Cui Z, Fu MW, Shao J. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling [J]. International Journal of Plasticity, 2020, 125: 133-149.
[72]Alabort E, Barba D, Sulzer S, Li?ner M, Petrinic N, Reed RC. Grain boundary properties of a nickel-based superalloy: Characterisation and modelling [J]. Acta Materialia, 2018, 151: 377-394.
[73]Pei H, Yang Y, Gu S, Zhao Y, Yao X, Wen Z, Yue Z. Study on oxidation-creep behavior of a Ni-based single crystal superalloy based on crystal plasticity theory [J]. Materials Science and Engineering: A, 2022, 839: 142834.
[74]Carpinteri A, Paggi M. Asymptotic analysis in Linear Elasticity: From the pioneering studies by Wieghardt and Irwin until today [J]. Engineering Fracture Mechanics, 2009, 76(12): 1771-1784.
[75]Yuan G-J, Wang R-Z, Gong C-Y, Zhang X-C, Tu S-T. Investigations of micro-notch effect on small fatigue crack initiation behaviour in nickel-based alloy GH4169: Experiments and simulations [J]. International Journal of Fatigue, 2020, 136: 105578.
[76]Sun F, Meade ED, O′Dowd NP. Microscale modelling of the deformation of a martensitic steel using the Voronoi tessellation method [J]. J Mech Phys Solids, 2018, 113: 35-55.
[77]Ruiz C, Noailly J, Lacroix D. Material property discontinuities in intervertebral disc porohyperelastic finite element models generate numerical instabilities due to volumetric strain variations [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 26: 1-10.
[78]Bauer S, Lackner R. Gradient-based adaptive discontinuity layout optimization for the prediction of strength properties in matrix–inclusion materials [J]. International Journal of Solids and Structures, 2015, 63: 82-98.
[79]Skelton RP. The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components [J]. Materials at High Temperatures, 2014, 30(3): 183-201.
[80]Wang R-Z, Guo S-J, Chen H, Wen J-F, Zhang X-C, Tu S-T. Multi-axial creep-fatigue life prediction considering history-dependent damage evolution: A new numerical procedure and experimental validation [J]. J Mech Phys Solids, 2019, 131: 313-336.
[81]Huo J, Sun D, Wu H, Wang W, Xue l. Multi-axis low-cycle creep/fatigue life prediction of high-pressure turbine blades based on a new critical plane damage parameter [J]. Engineering Failure Analysis, 2019, 106: 104159.
[82]Benedetti M, Berto F, Le Bone L, Santus C. A novel Strain-Energy-Density based fatigue criterion accounting for mean stress and plasticity effects on the medium-to-high-cycle uniaxial fatigue strength of plain and notched components [J]. International Journal of Fatigue, 2020, 133: 105397.
[83]Kim T-W, Kang D-H, Yeom J-T, Park N-K. Continuum damage mechanics-based creep–fatigue-interacted life prediction of nickel-based superalloy at high temperature [J]. Scripta Materialia, 2007, 57(12): 1149-1152.
[84]Park S, Jung J, Cho W, Jeong B-S, Na H, Kim S-I, Lee M-G, Han HN. Predictive dual-scale finite element simulation for hole expansion failure of ferrite-bainite steel [J]. International Journal of Plasticity, 2021, 136: 102900.
[85]Wang R-Z, Zhu S-P, Ji W, Zhang X-C, Tu S-T, Zhang C-C. High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy Damage mechanisms and life assessment [J]. International Journal of Fatigue, 2019, 118: 8-21.
[86]Hill R, Rice JR. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. J Mech Phys Solids, 1972, 20(6): 401-413.
[87]Asaro RJ, Rice JR. Strain localization in ductile single crystals [J]. J Mech Phys Solids, 1977, 25(5): 309-338.
[88]Yuan G-J, Zhang X-C, Chen B, Tu S-T, Zhang C-C. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach [J]. Journal of Materials Science & Technology, 2020, 38: 28-38.
[89]Li D-F, Golden BJ, O’dowd NP. Multiscale modelling of mechanical response in a martensitic steel: A micromechanical and length-scale-dependent framework for precipitate hardening [J]. Acta Materialia, 2014, 80: 445-456.
[90]Fournier B, Dalle F, Sauzay M, Longour J, Salvi M, Ca?s C, Tournié I, Giroux PF, Kim SH. Comparison of various 9–12%Cr steels under fatigue and creep-fatigue loadings at high temperature [J]. Materials Science and Engineering: A, 2011, 528(22): 6934-6945.
[91]Carroll LJ, Cabet C, Carroll MC, Wright RN. The development of microstructural damage during high temperature creep–fatigue of a nickel alloy [J]. International Journal of Fatigue, 2013, 47: 115-125.
[92]Zhang S-L, Xuan F-Z. Interaction of cyclic softening and stress relaxation of 9–12% Cr steel under strain-controlled fatigue-creep condition: Experimental and modeling [J]. International Journal of Plasticity, 2017, 98: 45-64.
[93]Frederick CO, Armstrong P. A Mathematical Representation of the Multiaxial Bauscinger Effect [J]. Materials at High Temperatures, 2007, 24: 1-26.
[94]Zhang K-S, Ju JW, Li Z, Bai Y-L, Brocks W. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity [J]. Mechanics of Materials, 2015, 85: 16-37.
[95]Ramulu M, Kunaporn S, Jenkins M, Hashish M, Hopkins J. Fatigue Performance of High-Pressure Waterjet-Peened Aluminum Alloy [J]. Journal of Pressure Vessel Technology, 2001, 124(1): 118-123.
[96]Soyama H, Park JD, Saka M. Use of Cavitating Jet for Introducing Compressive Residual Stress [J]. Journal of Manufacturing Science and Engineering, 1999, 122(1): 83-89.
[97]Ramulu M, Kunaporn S, Arola D, Hashish M, Hopkins J. Waterjet Machining and Peening of Metals [J]. Journal of Pressure Vessel Technology, 1999, 122(1): 90-95.
[98]Yao S-L, Li W, Wang J-S, Zeng F, Wang G-Y, Chi Y-X, Wang N, Liu S, Zhang X-C. Surface strengthening in confined spaces: A novel deflecting abrasive waterjet peening for improving the surface integrity of nickel-based superalloys GH4169 [J]. Journal of Manufacturing Processes, 2023, 85: 417-433.
[99]Lin Y, Pan J, Zhou HF, Gao HJ, Li Y. Mechanical properties and optimal grain size distribution profile of gradient grained nickel [J]. Acta Materialia, 2018, 153: 279-289.
[100]Shields MD, Zhang J. The generalization of Latin hypercube sampling [J]. Reliability Engineering & System Safety, 2016, 148: 96-108.
[101]Mcclelland JL, Rumelhart DE, Group PR. Parallel distributed processing [M]. MIT press Cambridge, MA, 1986.
[102]Cortes C, Vapnik V. Support-vector networks [J]. Machine Learning, 1995, 20(3): 273-297.
文章导航

/