Zou Y, Zhang H, Zhong G, et al. Collision probability estimation for small unmanned aircraft systems[J]. Reliability Engineering & System Safety, 2021, 213: 107619.
[2] Zhong G, Du S, Zhang H, et al. Demarcation method of safety separations for sUAV based on collision risk estimation[J]. Reliability Engineering & System Safety, 2024, 242: 109738.
[3] Xue M, Kuo V H, de Alvear Cardenas J I, et al. A Method of Compliance for Achieving Target Colli-sion Risk in UTM Operations[J]. 2024.
[4] 郭悦翔,司海强,刘鸿仪等.基于Event模型的无人机垂直碰撞风险研究[J].现代信息科技,2022,6(20):152-154+158.
GUO R X, SI H Q, LIU H Y. Research on UAV Vertical Collision Risk Based on Event Mod[J].Modern In-formation Technology,2022,6(20):152-154+158 (in Chinese).
[5] 岳睿媛,苏彬,朱新平等.基于改进Event模型的航路飞行过程垂直碰撞风险研究[J].航空工程进展,2022,13(01):129-134.
YUE R Y, SU B, ZHU X P. Research on Vertical Colli-sion Risk of Air Route Flight Based on Improved Event Model[J].Advances in Aeronautical Science and Engineering, 2022,13(01):129-134 (in Chinese).
[6] Wang C H J, Tan S K, Low K H. Three-dimensional (3D) Monte-Carlo modeling for UAS collision risk management in restricted airport airspace[J]. Aero-space Science and Technology, 2020, 105: 105964.
[7] Fitrikananda B P, Jenie Y I, Sasongko R A, et al. Risk Assessment Method for UAV’s Sense and Avoid Sys-tem Based on Multi-Parameter Quantification and Monte Carlo Simulation[J]. Aerospace, 2023, 10(9): 781.
[8] Banerjee P, Gorospe G, Ancel E. 3D representation of UAV-obstacle collision risk under off-nominal con-ditions[C]//2021 IEEE Aerospace Conference (50100). IEEE, 2021: 1-7.
[9] 童亮,甘旭升,张宏宏等.考虑多因素影响的无人机碰撞风险评估[J].兵器装备工程学报, 2023,44(04):282-289.
TONG L, GAN X S, ZHANG H H. Risk assessment of UAV collision considering multiple factors[J]. Journal of Ordnance Equipment Engineering, 2023,44(04):282-289 (in Chinese).
[10] 韩鹏,赵嶷飞.基于飞行环境建模的UAV地面撞击风险研究[J].中国安全科学学报,2020,30(01):142-147.
HAN P, ZHAO Y F. Study on ground impact risk of UAV based on flight environment[J]. China Safety Science Journal, 2020,30(01):142-147 (in Chinese).
[11] Noh S, Shortle J. Dynamic event tree framework to assess collision risk between various aircraft types[C]//2020 Integrated Communications Naviga-tion and Surveillance Conference (ICNS). IEEE, 2020: 2F1-1-2F1-13.
[12] Kim J, Nam G, Min D, et al. Safety Risk Assessment Based Minimum Separation Boundary for UAM Op-erations[C]//2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). IEEE, 2023: 1-8.
[13] Gigante G, Bernard M, Palumbo R, et al. Current ap-proaches in UAV Operational Risk Assessment and Practical Considerations[C]//Journal of Physics: Conference Series. IOP Publishing, 2024, 2716(1): 012055.
[14] Han P, Yang X, Zhao Y, et al. Quantitative ground risk assessment for urban logistical unmanned aerial ve-hicle (UAV) based on bayesian network[J]. Sustaina-bility, 2022, 14(9): 5733.
[15] Honghong Z, Xusheng G, Ying L, et al. Risk assess-ment framework for low-altitude UAV traffic man-agement[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(3): 2775-2792.
[16] Sun X, Hu Y, Qin Y, et al. Risk assessment of un-manned aerial vehicle accidents based on data-driven Bayesian networks[J]. Reliability Engineering & System Safety, 2024, 248: 110185.
[17] 李航,聂芳艺.基于贝叶斯网络的物流无人机碰撞风险评估[J].科学技术与工程,2023,23(15):6700-6706.
LI H, NIE F Y. Collision Risk Assessment of Logis-tics UAV Based on Bayesian Network[J]. Science Technology and Engineering, 2023,23(15):6700-6706 (in Chinese).
[18] la Cour-Harbo A, Schi?ler H. Probability of Low‐Altitude Midair Collision Between General Aviation and Unmanned Aircraft[J]. Risk Analysis, 2019, 39(11): 2499-2513.
[19] Lum C, Waggoner B. A risk based paradigm and model for unmanned aerial systems in the national airspace[M]//Infotech@ Aerospace 2011. 2011: 1424.
[20] International Civil Aviation Organization. Manual on Monitoring the Application of Performance-based Horizontal Separation Minima. Doc 10063[S]. Mon-treal, ICAO, 2017.
[21] International Civil Aviation Organization. A Unified Framework for Collision Risk Modelling in Support of the Manual on Airspace Planning Methodology for the Determination of Separation Minima (Doc 9689). Cir 319 [S]. Montreal, ICAO, 2009.
[22] McFadyen A, Martin T. Understanding vertical colli-sion risk and navigation performance for unmanned aircraft[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). IEEE, 2018: 1-10.
[23] Wang L, Zhao M, Hao W, et al. Collision Risk As-sessment between Manned Aircraft and Uavs in Mul-titype Operational Scenarios Based on Space-Time Overlap[J]. Available at SSRN 4836037.
[24] Kallinen V, McFadyen A. Collision risk modeling and analysis for lateral separation to support un-manned traffic management[J]. Risk analysis, 2022, 42(4): 854-881.
[25] 韩鹏,周斌,张恩宇.终端区多场景有人机/无人机空中碰撞风险研究[J].西华大学学报(自然科学版),2022,41(02):8-11+50.
HAN P, ZHOU B, ZHANG E Y. Air Collision Risk of Manned Drones in Multiple Scenarios in the Termi-nal Area [J]. Journal of Xihua University (Natural Science Edition), ,2022,41(02):8-11+50 (in Chi-nese).
[26] 励瑾,钟罡,张晓玮等.城市低空无人机空中碰撞风险计算方法研究[J].现代交通与冶金材料,2022,2(05):20-30.
LI J, ZHONG G, ZHANG X W. Research on calcula-tion method of aerial collision risk of urban low-altitude UAV[J]. Modern Transportation and Metal-lurgical Materials, 2022,2(05):20-30 (in Chinese).
[27] 潘卫军,陈佳炀,张智巍等.管制空域内无人机与有人机侧向碰撞风险研究[J].计算机与现代化,2020(03):1-5.
PAN W J, CHEN J W, ZHANG Z W. Lateral Collision Risk Evaluation Between Unmanned Aerial Vehicle and Manned Aircraft in Controlled Airspace[J]. Computer and Modernization, 2020(03):1-5 (in Chinese).
[28] Lin X, Fulton N, Westcott M. Target level of safety measures in air transportation-Review, validation and recommendations[C]//Proceedings of the IASTED International Conference. 2009, 662: 222.