机场管制空域内无人机运行安全风险评估

  • 杨锦 ,
  • 杭旭 ,
  • 王艳军
展开
  • 1. 南京航空航天大学
    2. 中国民用航空中南地区空中交通管理局

收稿日期: 2024-09-27

  修回日期: 2025-02-19

  网络出版日期: 2025-02-21

基金资助

先进空中出行背景下人机信任及人机协作策略研究

Safety risk assessment of UAVs operations in airport controlled airspace

  • YANG Jin ,
  • HANG Xu ,
  • WANG Yan-Jun
Expand

Received date: 2024-09-27

  Revised date: 2025-02-19

  Online published: 2025-02-21

摘要

本文面向城市空中交通概念下机场管制空域内无人机与运输航空融合运行场景,提出了一种空域运行安全风险评估方法。首先考虑无人机机动性能与航空器位置误差,提出了一种双层碰撞保护体积模型;之后使用蒙特卡罗模拟方法来模拟航空器误差计算碰撞概率;进一步提出了一种适用于无人机航线与起降航线碰撞风险评估的改进Reich模型。基于改进Reich模型,以国内某枢纽机场为例,对机场周围的无人机航线进行了风险评估,结果表明,该机场33跑道降落航线与无人机运行航线的碰撞风险不满足目标安全水平(TLS)要求。研究发现,降低无人机航线高度与飞行速度可以减小碰撞风险,而改变无人机航线流量不会影响碰撞风险。

本文引用格式

杨锦 , 杭旭 , 王艳军 . 机场管制空域内无人机运行安全风险评估[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31276

Abstract

Aiming at the scenario of the integrated operation of Unmanned Aerial Vehicles (UAVs) and transport aviation in the airport controlled airspace under the concept of urban air mobility, this paper proposes an airspace operation safety risk assessment method. Firstly, considering the maneuverability of UAVs and the position error of aircraft, a double-layer collision protection volume model is proposed; then, the Monte Carlo simulation method is used to simulate the aircraft error and calculate the collision probability; further, an improved Reich model suitable for the collision risk assessment of UAV routes and take-off and landing routes is proposed. Based on the improved Reich model, a risk assessment of UAV routes around a domestic hub airport is carried out, and the results show that the collision risk between the landing route of runway 33 of the airport and the UAV operation route does not meet the Target of Safety Level (TLS) requirements. The study found that reducing the altitude and flight speed of the UAV route can reduce the collision risk, while changing the UAV route flow will not affect the collision risk.

参考文献

Zou Y, Zhang H, Zhong G, et al. Collision probability estimation for small unmanned aircraft systems[J]. Reliability Engineering & System Safety, 2021, 213: 107619.
[2] Zhong G, Du S, Zhang H, et al. Demarcation method of safety separations for sUAV based on collision risk estimation[J]. Reliability Engineering & System Safety, 2024, 242: 109738.
[3] Xue M, Kuo V H, de Alvear Cardenas J I, et al. A Method of Compliance for Achieving Target Colli-sion Risk in UTM Operations[J]. 2024.
[4] 郭悦翔,司海强,刘鸿仪等.基于Event模型的无人机垂直碰撞风险研究[J].现代信息科技,2022,6(20):152-154+158.
GUO R X, SI H Q, LIU H Y. Research on UAV Vertical Collision Risk Based on Event Mod[J].Modern In-formation Technology,2022,6(20):152-154+158 (in Chinese).
[5] 岳睿媛,苏彬,朱新平等.基于改进Event模型的航路飞行过程垂直碰撞风险研究[J].航空工程进展,2022,13(01):129-134.
YUE R Y, SU B, ZHU X P. Research on Vertical Colli-sion Risk of Air Route Flight Based on Improved Event Model[J].Advances in Aeronautical Science and Engineering, 2022,13(01):129-134 (in Chinese).
[6] Wang C H J, Tan S K, Low K H. Three-dimensional (3D) Monte-Carlo modeling for UAS collision risk management in restricted airport airspace[J]. Aero-space Science and Technology, 2020, 105: 105964.
[7] Fitrikananda B P, Jenie Y I, Sasongko R A, et al. Risk Assessment Method for UAV’s Sense and Avoid Sys-tem Based on Multi-Parameter Quantification and Monte Carlo Simulation[J]. Aerospace, 2023, 10(9): 781.
[8] Banerjee P, Gorospe G, Ancel E. 3D representation of UAV-obstacle collision risk under off-nominal con-ditions[C]//2021 IEEE Aerospace Conference (50100). IEEE, 2021: 1-7.
[9] 童亮,甘旭升,张宏宏等.考虑多因素影响的无人机碰撞风险评估[J].兵器装备工程学报, 2023,44(04):282-289.
TONG L, GAN X S, ZHANG H H. Risk assessment of UAV collision considering multiple factors[J]. Journal of Ordnance Equipment Engineering, 2023,44(04):282-289 (in Chinese).
[10] 韩鹏,赵嶷飞.基于飞行环境建模的UAV地面撞击风险研究[J].中国安全科学学报,2020,30(01):142-147.
HAN P, ZHAO Y F. Study on ground impact risk of UAV based on flight environment[J]. China Safety Science Journal, 2020,30(01):142-147 (in Chinese).
[11] Noh S, Shortle J. Dynamic event tree framework to assess collision risk between various aircraft types[C]//2020 Integrated Communications Naviga-tion and Surveillance Conference (ICNS). IEEE, 2020: 2F1-1-2F1-13.
[12] Kim J, Nam G, Min D, et al. Safety Risk Assessment Based Minimum Separation Boundary for UAM Op-erations[C]//2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). IEEE, 2023: 1-8.
[13] Gigante G, Bernard M, Palumbo R, et al. Current ap-proaches in UAV Operational Risk Assessment and Practical Considerations[C]//Journal of Physics: Conference Series. IOP Publishing, 2024, 2716(1): 012055.
[14] Han P, Yang X, Zhao Y, et al. Quantitative ground risk assessment for urban logistical unmanned aerial ve-hicle (UAV) based on bayesian network[J]. Sustaina-bility, 2022, 14(9): 5733.
[15] Honghong Z, Xusheng G, Ying L, et al. Risk assess-ment framework for low-altitude UAV traffic man-agement[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(3): 2775-2792.
[16] Sun X, Hu Y, Qin Y, et al. Risk assessment of un-manned aerial vehicle accidents based on data-driven Bayesian networks[J]. Reliability Engineering & System Safety, 2024, 248: 110185.
[17] 李航,聂芳艺.基于贝叶斯网络的物流无人机碰撞风险评估[J].科学技术与工程,2023,23(15):6700-6706.
LI H, NIE F Y. Collision Risk Assessment of Logis-tics UAV Based on Bayesian Network[J]. Science Technology and Engineering, 2023,23(15):6700-6706 (in Chinese).
[18] la Cour-Harbo A, Schi?ler H. Probability of Low‐Altitude Midair Collision Between General Aviation and Unmanned Aircraft[J]. Risk Analysis, 2019, 39(11): 2499-2513.
[19] Lum C, Waggoner B. A risk based paradigm and model for unmanned aerial systems in the national airspace[M]//Infotech@ Aerospace 2011. 2011: 1424.
[20] International Civil Aviation Organization. Manual on Monitoring the Application of Performance-based Horizontal Separation Minima. Doc 10063[S]. Mon-treal, ICAO, 2017.
[21] International Civil Aviation Organization. A Unified Framework for Collision Risk Modelling in Support of the Manual on Airspace Planning Methodology for the Determination of Separation Minima (Doc 9689). Cir 319 [S]. Montreal, ICAO, 2009.
[22] McFadyen A, Martin T. Understanding vertical colli-sion risk and navigation performance for unmanned aircraft[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). IEEE, 2018: 1-10.
[23] Wang L, Zhao M, Hao W, et al. Collision Risk As-sessment between Manned Aircraft and Uavs in Mul-titype Operational Scenarios Based on Space-Time Overlap[J]. Available at SSRN 4836037.
[24] Kallinen V, McFadyen A. Collision risk modeling and analysis for lateral separation to support un-manned traffic management[J]. Risk analysis, 2022, 42(4): 854-881.
[25] 韩鹏,周斌,张恩宇.终端区多场景有人机/无人机空中碰撞风险研究[J].西华大学学报(自然科学版),2022,41(02):8-11+50.
HAN P, ZHOU B, ZHANG E Y. Air Collision Risk of Manned Drones in Multiple Scenarios in the Termi-nal Area [J]. Journal of Xihua University (Natural Science Edition), ,2022,41(02):8-11+50 (in Chi-nese).
[26] 励瑾,钟罡,张晓玮等.城市低空无人机空中碰撞风险计算方法研究[J].现代交通与冶金材料,2022,2(05):20-30.
LI J, ZHONG G, ZHANG X W. Research on calcula-tion method of aerial collision risk of urban low-altitude UAV[J]. Modern Transportation and Metal-lurgical Materials, 2022,2(05):20-30 (in Chinese).
[27] 潘卫军,陈佳炀,张智巍等.管制空域内无人机与有人机侧向碰撞风险研究[J].计算机与现代化,2020(03):1-5.
PAN W J, CHEN J W, ZHANG Z W. Lateral Collision Risk Evaluation Between Unmanned Aerial Vehicle and Manned Aircraft in Controlled Airspace[J]. Computer and Modernization, 2020(03):1-5 (in Chinese).
[28] Lin X, Fulton N, Westcott M. Target level of safety measures in air transportation-Review, validation and recommendations[C]//Proceedings of the IASTED International Conference. 2009, 662: 222.
文章导航

/