流体力学与飞行力学

轴向分级燃烧不稳定性的关键因素与控制

  • 秦蕾 ,
  • 张光宇 ,
  • 王晓宇 ,
  • 孙晓峰
展开
  • 1.北京航空航天大学 能源与动力工程学院,北京 100191
    2.北京航空航天大学 航空发动机研究院,北京 100191
.E-mail: sunxf@buaa.edu.cn

收稿日期: 2024-12-19

  修回日期: 2025-01-22

  录用日期: 2025-02-12

  网络出版日期: 2025-02-18

基金资助

国家自然科学基金(52476024);中国博士后科学基金(GZB20240930)

Key factors and control methods of combustion instability under axial staging combustion

  • Lei QIN ,
  • Guangyu ZHANG ,
  • Xiaoyu WANG ,
  • Xiaofeng SUN
Expand
  • 1.School of Energy and Power Engineering,Beihang University,Beijing 100191,China
    2.Research Institute of Aero-Engine,Beihang University,Beijing 100191,China
E-mail: sunxf@buaa.edu.cn

Received date: 2024-12-19

  Revised date: 2025-01-22

  Accepted date: 2025-02-12

  Online published: 2025-02-18

Supported by

National Natural Science Foundation of China(52476024);China Postdoctoral Science Foundation(GZB20240930)

摘要

工业燃气轮机的轴向分级燃烧技术显著拓宽了功率调节比,并有效降低了NO x 污染物排放。然而,二级喷嘴的相关参数对燃烧不稳定性的影响仍需深入研究。为此,建立了一个三维理论分析模型,来考虑多热源与穿孔板阻抗边界的耦合作用,以此分析分级燃烧对燃烧不稳定性的影响及声衬的控制机理。研究结果表明,一级喷嘴的热源响应对轴向一阶模态影响明显,而二级喷嘴的相关参数主要影响周向一阶模态。当二级喷嘴位于轴向一阶模态的声压反节点,即燃烧室进出口附近时,对频率和增长率的影响更加明显。当两个二级喷嘴的周向角度差为π/2时,其热源响应对周向一阶分裂模态的综合影响相对微弱;而当周向角度差为π时,二级喷嘴的热源响应对周向一阶分裂模态的综合影响较为显著。此外,二级喷嘴的存在导致周向一阶模态出现轴向声压分布,从而使声衬在接近二级喷嘴的轴向位置能够有效抑制燃烧不稳定性。

本文引用格式

秦蕾 , 张光宇 , 王晓宇 , 孙晓峰 . 轴向分级燃烧不稳定性的关键因素与控制[J]. 航空学报, 2025 , 46(5) : 531692 -531692 . DOI: 10.7527/S1000-6893.2025.31692

Abstract

The axial staging combustion for industrial gas turbines significantly widens the power regulation range and effectively reduces NO x emissions. However, the impact of secondary nozzle parameters on the combustion instability requires further investigation. To address this, a three-dimensional theoretical model is developed to consider the coupling of multiple nozzles with the perforated liner, in order to analyze the effects of axial staging combustion on combustion instability and the control mechanisms of the perforated liner.Results show that the flame response of the primary nozzle has a notable effect on the first-order axial modes, while the parameters of the secondary nozzle mainly affect the first-order azimuthal modes. Furthermore, when the secondary nozzle is located at the acoustic pressure antinode of the first-order axial mode, i.e., near the inlet and outlet of the combustion chamber, its effects on frequency and growth rate become more important. When the circumferential angular difference between the two secondary nozzles is π/2, the combined effects of their flame responses on the nondegenerate azimuthal modes are relatively weak. In contrast, when the circumferential angular difference is π, the combined effects of the secondary nozzles’ flame responses on the nondegenerate azimuthal modes become more significant. In addition, the presence of the secondary nozzles leads to an axial sound pressure distribution for the first-order azimuthal mode, allowing the perforated liner positioned close to the secondary nozzle to effectively suppress the combustion instability.

参考文献

1 U.S. Environmental Protection Agency. Aircraft: Exhaust emission standards[R]. Washington, D.C.: U.S. Environmental Protection Agency, 2016.
2 KARIM H, NATARAJAN J, NARRA V, et al. Staged combustion system for improved emissions operability and flexibility for 7HA class heavy duty gas turbine engine[C]∥ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017.
3 RAYLEIGH L. The theory of sound[M]. 2nd edition. London: Macmillan, 1896: 224-234.
4 HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science200935(4): 293-364.
5 李磊, 孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术201031(6): 710-720.
  LI L, SUN X F. Mechanism, prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology201031(6): 710-720 (in Chinese).
6 SCHULZ O. Combustion dynamics in gas turbine sequential combustors[D]. Zurich: ETH Zurich, 2019.
7 CHOI Y, KIM K T. Influences of axial-fuel-staging combustion dynamics of a lean premixed combustor[C]∥Proceedings of the 29th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2023.
8 LI Y Z, JIA Y L, JIN M, et al. Experimental investigations on NO x emission and combustion dynamics in an axial fuel staging combustor[J]. Journal of Thermal Science202231(1): 198-206.
9 隋永枫, 张宇明, 臧鹏, 等. 次级燃烧对轴向分级燃烧室燃烧特性影响的试验研究[J]. 上海交通大学学报202458(8): 1139-1147.
  SUI Y F, ZHANG Y M, ZANG P, et al. Experimental study of influence of secondary combustion on combustion characteristics of axial staged combustor[J]. Journal of Shanghai Jiao Tong University202458(8): 1139-1147 (in Chinese).
10 梁恩广, 张辰杰, 余志健, 等. 燃气轮机轴向贫燃分级燃烧技术进展[J]. 动力工程学报202444(9): 1328-1339.
  LIANG E G, ZHANG C J, YU Z J, et al. Progress in axial staged lean premixed combustion technology of gas turbines[J]. Journal of Chinese Society of Power Engineering202444(9): 1328-1339 (in Chinese).
11 BLAETTE L, BOETTCHER A, STREB H. Combustion system upgrades for high operation flexibility and low emission: Design, testing and validation of the SGT5-4000F[C]∥ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2020.
12 GUYOT D, TEA G, APPEL C. Low NO x lean premix reheat combustion in Alstom GT24 gas turbines[J]. Journal of Engineering for Gas Turbines and Power2016138(5): 051503.
13 DUPèRE I D J, DOWLING A P. The use of Helmholtz resonators in a practical combustor[J]. Journal of Engineering for Gas Turbines and Power2005127(2): 268-275.
14 YANG D, SOGARO F M, MORGANS A S, et al. Optimising the acoustic damping of multiple Helmholtz resonators attached to a thin annular duct[J]. Journal of Sound and Vibration2019444: 69-84.
15 ELDREDGE J D, DOWLING A P. The absorption of axial acoustic waves by a perforated liner with bias flow[J]. Journal of Fluid Mechanics2003485: 307-335.
16 郭志辉, 李磊, 张澄宇, 等. 关于热声不稳定性现象的一种控制方法[J]. 工程热物理学报200829(6): 947-950.
  GUO Z H, LI L, ZHANG C Y, et al. A control method for the suppression of thermoacoustic instability[J]. Journal of Engineering Thermophysics200829(6): 947-950 (in Chinese).
17 孙晓峰, 张光宇, 王晓宇, 等. 航空发动机燃烧不稳定性预测及控制研究进展[J]. 航空学报202344(14): 628733.
  SUN X F, ZHANG G Y, WANG X Y, et al. Research progress in aero-engine combustion instability prediction and control[J]. Acta Aeronautica et Astronautica Sinica202344(14): 628733 (in Chinese).
18 ZHANG G Y, WANG X Y, LI L, et al. Effects of perforated liners on controlling combustion instabilities in annular combustors[J]. AIAA Journal202058(7): 3100-3114.
19 ZHANG G Y, ZHANG X X, WANG X Y, et al. Modeling analysis of combustion instability in an annular combustor equipped with circumferentially segmented perforated liner[J]. Journal of Sound and Vibration2023549: 117573.
20 QIN L, WANG X Y, ZHANG G Y, et al. Control of azimuthal combustion instability through the injector mounting surface of annular combustors[J]. AIAA Journal202361(9): 3795-3809.
21 QIN L, WANG X Y, ZHANG G Y, et al. Theoretical model of azimuthal combustion instability subject to non-trivial boundary conditions[J]. Chinese Journal of Aeronautics202437(9): 113-130.
22 SUN X, JING X, ZHANG H, et al. Effect of grazing-bias flow interaction on acoustic impedance of perforated plates[J]. Journal of Sound Vibration2002254(3): 557-573.
23 JING X D, SUN X F. Experimental investigations of perforated liners with bias flow[J]. The Journal of the Acoustical Society of America1999106(5): 2436-2441.
24 JING X D, SUN X F. Effect of plate thickness on impedance of perforated plates with bias flow[J]. AIAA Journal200038(9): 1573-1578.
25 HOWE M S. On the theory of unsteady high Reynolds number flow through a circular aperture[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences1979366(1725): 205-223.
26 QIN L, WANG X Y, ZHANG G Y, et al. Suppression of azimuthal combustion instability using perforated liner under symmetry breaking[J]. Journal of Propulsion and Power202541(1): 27-39.
27 GOLDSTEIN M E. Aeroacoustics[M]. New York: McGraw-Hill International Book, 1976: 22-32.
文章导航

/