超声速民机因其在长距离、长航时航线运输方面所具有的明显优势,已成为未来民机的重要发展方向。“绿色航空”概念的提出使得节能减排和降噪越来越成为民机的重要优化设计目标之一,自然对其动力装置也提出了相应的要求。传统构型动力无法实现起飞低噪声、超巡高单位推力、低耗油率和低排放指标的兼顾。本文以带CDFS的双外涵变循环发动机构型为研究对象,考虑发动机性能及喷流噪声、NOx排放等关键优化设计目标,开展可调几何控制规律设计方法研究。研究表明,提高第一外涵分流比有助于降低NOx排放,提高内涵和第二外涵分流比有助于降低喷流噪声。将设计结果应用于第一代超音速客机“协和号”动力装置重优化设计,与基准方案相比,在满足飞机性能需求的前提下,超音巡航工况耗油率降低了20.19%,起飞工况喷流速度实现了44.47%的降幅,使得起飞噪声指标满足适航要求。
Due to its obvious advantages in long-distance and long-endurance transport, supersonic civil aircraft has become an important development direction for future civil aircraft. The concept of ‘green aviation’ makes energy saving, emission reduction and noise reduction become one of the important optimization design objectives of civil aircraft, which naturally puts forward corresponding requirements for its power plant. The traditional configuration power cannot achieve the low noise at take-off, high thrust per unit for super-cruise, low fuel consumption rate and low emission indexes. This paper takes the dual-containment variable-cycle engine configuration with CDFS as the research object, and carries out the research on the design method of adjustable geometry control law considering the key optimization design objectives of engine performance and jet noise, NOx emission, etc. The research shows that improving the first-containment variable-cycle engine is the most effective way to improve the performance of the first-containment engine. The study shows that increasing the first culvert split ratio helps to reduce NOx emissions, and increasing the inner and second culvert split ratios helps to reduce jet noise. The design results are applied to the power unit reoptimization design of the first-generation supersonic airliner “Concorde”, and com-pared with the baseline scheme, the supersonic cruise operating fuel consumption rate is reduced by 20.19% and the takeoff operating jet speed is reduced by 44.47% under the premise of meeting the performance requirements of the aircraft, so that the takeoff noise index meets the airworthiness requirements. The takeoff noise index meets the airworthiness requirements.
[1]韩忠华, 钱战森, 乔建领.声爆预测与低声爆设计[M]. 北京:科学出版社, 2022. 189-192
[2]冯晓强.超声速客机低声爆机理及设计方法研究[D]. 西安: 西北工业大学, 2014: 3-4
[3]CHUDOBA B,COLEMAN G,ROBERTS K,et al.What price supersonic speed? -A design anatomy of supersonic transportation-part 1[C]∥45th AIAA Aero? space Sciences Meeting and Exhibit. Reston: AIAA, 2007
[4]徐悦, 韩忠华, 尤延铖, 等.新一代绿色超声速民机的发展现状与挑战[J].科学通报, 2020, 65(2-3):127-133
[5]John D J.The Olympus 593 powerplant for Cor-corde[J].Aircraft Engineering and Aerospace Tech-nology, 1967, 39(4):6-9
[6]Loftin L K.Toward a second-generation supersonic transport[J].Journal of Aircraft, 1974, 11(1):3-9
[7]Curry T J,Batterson J G.Estimation of handling qualities parameters of the Tu-144 supersonic transport aircraft from flight test data[R]. NASA-CR-2000-210290
[8]Jensen D T.Supersonic transport (SST) engines[R]. AIAA-2009-4933
[9]韩玉琪.超声速民机动力发展分析[J]. 航空动力, 2023, 6(03): 47-49.
[10]王占学, 郝旺, 张晓博等.用于超声速民机的变循环发动机研究进展[J].航空发动机, 2021, 47(2):7-16
[11]Johnson J E.Variable cycle engine developments at general electric1955-1995[C]//Developments in high-speed-vehicle propulsion systems. Reston VA: AIAA, 1996: 105-158
[12]唐海龙.面向对象的航空发动机性能仿真系统及其应用[D]. 北京: 北京航空航天大学, 2000: 45-84
[13]吕雅.一种自适应循环发动机总体性能分析[D]. 北京: 北京航空航天大学, 2016: 21-78
[14]苟学中.变循环发动机建模及控制规律研究[D]. 南京: 南京航空航天大学, 2012: 45-55
[15]孙丰勇, 张海波, 叶志锋等.航空发动机超声速巡航性能寻优控制研究[J].推进技术, 2015, 36(08):1248-1256
[16]孙丰勇, 张海波, 叶志锋.超声速进气道发动机一体化控制[J].航空动力学报, 2014, 29(10):2279-2287
[17]郑俊超.自适应循环发动机过渡过程控制规律优化方法研究[D]. 北京:北京航空航天大学, 2019: 36-71
[18]黄红超, 王占学, 刘增文等.基于iSIGHT的变循环发动机性能优化[J].机械设计与制造, 2012, 33(02):217-219
[19]骆广琦, 李游, 刘琨等.变循环发动机组合变几何调节方案[J].航空动力学报, 2014, 29(10):2273-2278
[20]骆广琦, 李游, 吴涛等.基于蜂群算法的变循环发动机最小耗油率优化[J].航空发动机, 2016, 42(01):1-5
[21]徐永远.基于智能优化算法的变循环发动机性能寻优[D]. 南京: 南京航空航天大学, 2017: 35-49
[22]刘渊, 黄向华, 孙庆彪等.基于改进灰狼优化算法的涡扇发动机性能喷流噪声综合优化控制研究[J].南京航空航天大学学报, 2020, 52(4):532-539
[23]Doulgeris G, Korakianitis T, Avital EJ, et al.Effect of jet noise reduction on gas turbine engine efficiency[J].Proceedings of the Institution of Mechanical Engi-neers, Part G: Journal of Aerospace Engineering, 2013, 227(9):1441-1455
[24]CHEN M, JIA Z H, TANG H L, et al.Research on Simulation and Performance Optimization of Mach 4 Civil Aircraft Propulsion Concept[J].International Journal of Aerospace Engineering, 2019, 2019(08):1-19
[25]张紫煜, 张晓博, 周莉, 王占学.考虑污染物排放的开式转子发动机总体性能建模及分析研究[J].推进技术, 2024, 45(3):41-52
[26]Stone J R, Kresja E A, Clark B K.Jet noise modeling for suppressed and unsuppressed aircraft in simulated flight[R]. NASA/TM-2009-215524, 2009
[27]王胜宇, 孙有朝, 李龙彪.民用航空发动机循环的排放评估[J].航空计算技术, 2020, 50(4):46-50
[28]阳永沆.马赫数4一级客机动力概念方案初步研究[D]. 北京: 北京航空航天大学, 2016: 23-43
[29]Coen P.ARMD Strategic Thrust 2:Innovation in Commercial Supersonic Aircraft[R]. 2016, NASA armd-sip-thrust-2-508.
[30]Harry R.Welge, John Bonet, et al. N+2 Supersonic Concept Development and Systems Integration[R]. NASA/CR-2010-216842, 2010