氢对TC4ELI钛合金焊接接头组织和性能影响

  • 杨日明 ,
  • 申秀丽 ,
  • 董少静
展开
  • 1. 北京航空航天大学
    2. 先进航空发动机协同创新中心

收稿日期: 2024-10-23

  修回日期: 2025-02-13

  网络出版日期: 2025-02-18

基金资助

中央高校基本科研业务费专项

Influence of hydrogen on the microstructure and mechanical properties of TC4ELI titanium alloy welded joints

  • YANG Ri-Ming ,
  • SHEN Xiu-Li ,
  • DONG Shao-Jing
Expand
  • 1. Beijing University of Aeronautics and Astronautics
    2. Collaborative Innovation Center for Advanced Aero-Engine
    3.

Received date: 2024-10-23

  Revised date: 2025-02-13

  Online published: 2025-02-18

Supported by

the Fundamental Research Funds for the Central Universities

摘要

TC4ELI钛合金在氢燃料发动机上应用前景巨大,但涉氢部件焊接结构存在氢损伤风险。通过电子束焊接和高温气相充氢得到了充氢0.2%的焊接TC4ELI拉伸、疲劳和纳米压痕试验件,结合X射线衍射和二次离子质谱等微观表征,开展了纳米压痕和低周疲劳等力学试验,深入研究了氢对TC4ELI焊接接头微观组织和力学性能的影响。结果表明,充氢促进TC4ELI焊接接头各微区α→β相变,析出δ氢化物,且焊缝区内析出的氢化物较多,对应的弹性模量和硬度下降程度最大,焊接接头组织和性能趋于均匀化。TC4ELI焊接件充氢后弹性模量和断裂应变显著降低,氢化物导致断裂模式由穿晶韧窝断裂转变为沿晶脆性断裂。充氢TC4ELI焊接件在低应力水平下因应力诱导氢化物开裂,低周疲劳寿命显著降低,在高应力水平下因氢致局部塑性,表现出更好的抗疲劳性能。

本文引用格式

杨日明 , 申秀丽 , 董少静 . 氢对TC4ELI钛合金焊接接头组织和性能影响[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31439

Abstract

TC4ELI titanium alloy has a great application prospect in hydrogen fuel engine, but there is a risk of hydrogen damage in the welded structure of hydrogen-related components. The tensile, fatigue and nanoindentation test pieces of welded TC4ELI with 0.2% hydrogen were obtained by electron beam welding and high temperature gas charging of hydrogen. Combined with X-ray diffraction, secondary ion mass spectrometry and other microscopic characterization methods, mechanical tests such as nanoindentation and low-cycle fatigue tests were carried out to deeply investigate the influence of hydrogen on the microstructure and mechanical properties of TC4ELI welded joints. The results show that hydrogen charging can promote the transformation of α phase into β phase and precipitate δ hydride in each zone of TC4ELI welded joints. More hydride precipitated in the weld metal, and the corresponding elastic modulus and hardness decreased the most, resulting in uniform microstructure and properties of welded joints.The elastic modulus and fracture strain of TC4ELI welded joints decreased significantly after hydrogen charging, and the fracture mode changed from transgranular dimple fracture to intergranular brittle fracture due to the influence of hydride.The low-cycle fatigue life of hydrogen-charged TC4ELI is significantly reduced due to stress-induced hydride cracking at low stress level, while it shows better fatigue resistance at high stress level due to hydrogen-induced local plasticity.

参考文献

[1]曹冠杰, 王业辉, 孙小金. 氢能航空发展现状分析[J]. 航空动力, 2022(02): 29-33. CAO G J, WANG Y H, SUN X J. Development status of hydrogen in aviation[J]. Aerospace Power, 2022(02):29-33 (in Chinese). [2]李维, 曹俊, 肖为. 氢燃料发动机技术及发展趋势[J]. 航空动力, 2022(02): 39-42. LI W, CAO J, XIAO W. Technology and development trend of hydrogen gas turbine[J]. Aerospace Power, 2022(02): 39-42 (in Chinese). [3]褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀:基础部分[M]. 北京: 科学出版社, 2013. CHU W Y, QIAO L J, LI J X, et al. Hydrogen embrittlement and stress corrosion cracking: basic part[M]. Beijing: Science Press, 2013 (in Chinese). [4]李丛, 赵雷, 徐连勇, 等. 掺氢/纯氢环境下燃气轮机的氢致损伤研究进展[J/OL]. 材料导报, (2024-06-13) [2024-10-19]. https://kns-cnki-net.e1.buaa.edu.cn/kcms/detail/50.1078.TB.20240613.0951.004.html. LI C, ZHAO L, XU L Y, et al. Research advances in hydrogen induced damage of hydrogen-doped/pure-hydrogen gas turbines[J/OL]. Materials Review, (2024-06-13) [2024-10-19]. https://kns-cnki-net.e1.buaa.edu.cn/kcms/detail/50.1078.TB.20240613.0951.004.html. [5]王佳, 刘晓勇, 高灵清, 等. 钛合金氢致损伤机理的研究现状[J]. 材料保护, 2020, 53(11): 98-105. WANG J, LIU X Y, GAO L Q, et al. A review on mechanism of hydrogen embrittlement of titanium alloys[J]. Material Protection, 2020, 53(11): 98-105 (in Chinese). [6]聂鹏, 杨世源, 郭永强, 等. 氢环境下金属材料的疲劳寿命预测:从裂纹的角度[J]. 长沙理工大学学报(自然科学版), 2024, 21(04): 44-67. NIE P, YANG S Y, GUO Y Q, et al. Fatigue life prediction of metal materials in hydrogen environment: from the perspective of crack[J]. Journal of Changsha University of Science & Technology (Natural Science), 2024, 21(04): 44-67 (in Chinese). [7]许爱军, 万海峰, 梁春祖, 等. 低温钛合金材料应用现状及发展趋势[J]. 精密成形工程, 2020, 12(06): 145-156. XU A J, WAN H F, LIANG C Z, et al. Application status and development trend of cryogenic titanium alloy[J]. Journal of Netshape Forming Engineering, 2020, 12(06): 145-156 (in Chinese). [8]吕志阳, 熊峻江, 赵延广, 等. Ti-6Al-4V/ELI钛合金250 ℃裂纹扩展性能[J]. 航空材料学报, 2018, 38(04): 123-129. LYU Z Y, XIONG J J, ZHAO Y G, et al. Experimental investigation of high-temperature crack propagation behaviors for Ti-6Al-4V/ELI at 250 ℃[J]. Journal of Aeronautical Materials, 2018, 38(04): 123-129 (in Chinese). [9]胡世威, 梁浩, 徐兵. 某航天器输氢管道系统结构完整性评估[J]. 航空学报, 2019, 40(08): 278-287. HU S W, LIANG H, XU B. Assessment procedure for structural integrity of hydrogen pipeline system for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(8): 278-287 (in Chinese). [10]黄鑫, 齐红宇, 李少林, 等. 焊接接头裂纹扩展行为研究评述与展望[J/OL]. 工程力学, (2023-10-27) [2024-10-19]. https://kns-cnki-net.e1.buaa.edu.cn/kcms/detail/11.2595.O3.20231027.1511.006.html. HUANG X, QI H Y, LI S L, et al. Review and prospect of research on crack propagation behavior of welded joints[J/OL]. Engineering Mechanics, (2023-10-27) [2024-10-19]. https://kns-cnki-net.e1.buaa.edu.cn/kcms/detail/11.2595.O3.20231027.1511.006.html (in Chinese). [11]ZHANG H B, LEYGRAF C, JIN Y, et al. The formation of hydride and its influence on Ti–6Al–4V alloy fracture behavior[J]. International Journal of Hydrogen Energy, 2023, 48(92): 36169-36184. [12]ELI B, NISSIM N, BRIAN R, et al. Microvoids in electrochemically hydrogenated titanium-based alloys[J]. International Journal of Hydrogen Energy, 2021, 46(53): 27234-27242. [13]LIU X Z, HAN E H, SONG Y W, et al. Hydrogen damage process of dual-phase Ti-6Al-4V alloy: From surface passive film to the interior substrate[J]. Electrochimica Acta, 2023, 464: 142916-1429 27. [14]NGUYEN T D, SINGH C, LEE D H, et al. Deciphering hydrogen embrittlement mechanisms in Ti6Al4V alloy: Role of solute hydrogen and hydride phase[J]. Materials, 2024, 17(5): 1178-1187. [15]MURAVEV V I, BAKHMATOV P V, GRIGOREV V V, et al. Features of the hydrogen distribution in a weld seam made by electron beam welding of titanium alloys[J]. Welding International, 2021, 35(10-12): 459-464. [16]FENG X D, SHI Y, ZHANG W Z, et al. Hydrogen Embrittlement Failure Behavior of Fatigue-Damaged Welded TC4 Alloy Joints[J]. Crystals, 2023, 13(3): 512-525. [17]DONG Y C, HUANG S, WANG Y Y, et al. Stress corrosion cracking of TC4ELI alloy with different microstructure in 3.5% NaCl solution[J]. Materials Characterization, 2022, 194: 112357. [18]杨日明, 申秀丽, 董少静. 氢对TC4ELI钛合金微观组织和力学性能影响[J]. 航空动力学报, 2024, XX(XX): XX-XX. (注:已录用,针对不同氢含量的TC4ELI母材件,与本文内容不重复) YANG R M, SHEN X L, DONG S J. Influence of hydrogen on the microstructure and mechanical properties of TC4ELI titanium alloy[J]. Journal of Aerospace Power, 2024, XX(XX): XX-XX (in Chinese). [19]杨日明, 申秀丽, 董少静. 氢对TC4ELI钛合金疲劳裂纹扩展行为影响[J]. 材料导报, 2024, XX(XX): XX-XX. (注:已录用) YANG R M, SHEN X L, DONG S J. Influence of hydrogen on fatigue crack growth behavior of TC4ELI titanium alloy[J]. Materials Reports, 2024, XX(XX): XX-XX (in Chinese). [20]龚江宏. 准静态纳米压痕的理论基础与数据分析[J]. 陶瓷学报, 2021, 42(02): 181-245. GONG J H. Theoretical foundation and data analyses of quasi-static nanoindentation[J]. Journal of Ceramics, 2021, 42(2): 181-245 (in Chinese). [21]OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. [22]韩鹏, 毛智勇, 付鹏飞, 等. 焊后热处理对TC4-DT钛合金电子束焊接接头组织性能的影响[J]. 钛合金焊接技术, 2013, 16: 93-96. HAN P, MAO Z Y, FU P F, at al. Effect of post-weld heat treatment on microstructure and mechanical properties in TC4-DT EB joint[J]. Titanium Alloy Welding Technology, 2013, 16: 93-96 (in Chinese). [23]GAO K, LIU Z Y, SHEN X L, et al. Integration of nanoindentation and finite element method for interpretable tensile properties: A cross-scale calculation method of uneven joints[J]. Chinese Journal of Aeronautics, 2023, 36(6): 233-248. [24]HONG Y J, ZHOU C S, ZHENG Y Y, et al. Hydrogen effect on the deformation evolution process in situ detected by nanoindentation continuous stiffness measurement[J]. Materials Characterization, 2017, 12: 12735. [25]BIRNBAUM H K, SOFRONIS P. Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture[J]. Materials Science&Engineering:A, 1994, 176(1/2): 191-202. [26]CHEN C Q, LI S X, LU K, et al. An investigation on structure, deformation and fracture of hydrides in titanium with a large range of hydrogen contents[J]. Acta Materialia, 2004, 52(12): 3697-3706.
文章导航

/