[1]曹冠杰, 王业辉, 孙小金. 氢能航空发展现状分析[J]. 航空动力, 2022(02): 29-33.
CAO G J, WANG Y H, SUN X J. Development status of hydrogen in aviation[J]. Aerospace Power, 2022(02):29-33 (in Chinese).
[2]李维, 曹俊, 肖为. 氢燃料发动机技术及发展趋势[J]. 航空动力, 2022(02): 39-42.
LI W, CAO J, XIAO W. Technology and development trend of hydrogen gas turbine[J]. Aerospace Power, 2022(02): 39-42 (in Chinese).
[3]褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀:基础部分[M]. 北京: 科学出版社, 2013.
CHU W Y, QIAO L J, LI J X, et al. Hydrogen embrittlement and stress corrosion cracking: basic part[M]. Beijing: Science Press, 2013 (in Chinese).
[4]李丛, 赵雷, 徐连勇, 等. 掺氢/纯氢环境下燃气轮机的氢致损伤研究进展[J/OL]. 材料导报, (2024-06-13) [2024-10-19]. https://kns-cnki-net.e1.buaa.edu.cn/kcms/detail/50.1078.TB.20240613.0951.004.html.
LI C, ZHAO L, XU L Y, et al. Research advances in hydrogen induced damage of hydrogen-doped/pure-hydrogen gas turbines[J/OL]. Materials Review, (2024-06-13) [2024-10-19]. https://kns-cnki-net.e1.buaa.edu.cn/kcms/detail/50.1078.TB.20240613.0951.004.html.
[5]王佳, 刘晓勇, 高灵清, 等. 钛合金氢致损伤机理的研究现状[J]. 材料保护, 2020, 53(11): 98-105.
WANG J, LIU X Y, GAO L Q, et al. A review on mechanism of hydrogen embrittlement of titanium alloys[J]. Material Protection, 2020, 53(11): 98-105 (in Chinese).
[6]聂鹏, 杨世源, 郭永强, 等. 氢环境下金属材料的疲劳寿命预测:从裂纹的角度[J]. 长沙理工大学学报(自然科学版), 2024, 21(04): 44-67.
NIE P, YANG S Y, GUO Y Q, et al. Fatigue life prediction of metal materials in hydrogen environment: from the perspective of crack[J]. Journal of Changsha University of Science & Technology (Natural Science), 2024, 21(04): 44-67 (in Chinese).
[7]许爱军, 万海峰, 梁春祖, 等. 低温钛合金材料应用现状及发展趋势[J]. 精密成形工程, 2020, 12(06): 145-156.
XU A J, WAN H F, LIANG C Z, et al. Application status and development trend of cryogenic titanium alloy[J]. Journal of Netshape Forming Engineering, 2020, 12(06): 145-156 (in Chinese).
[8]吕志阳, 熊峻江, 赵延广, 等. Ti-6Al-4V/ELI钛合金250 ℃裂纹扩展性能[J]. 航空材料学报, 2018, 38(04): 123-129.
LYU Z Y, XIONG J J, ZHAO Y G, et al. Experimental investigation of high-temperature crack propagation behaviors for Ti-6Al-4V/ELI at 250 ℃[J]. Journal of Aeronautical Materials, 2018, 38(04): 123-129 (in Chinese).
[9]胡世威, 梁浩, 徐兵. 某航天器输氢管道系统结构完整性评估[J]. 航空学报, 2019, 40(08): 278-287.
HU S W, LIANG H, XU B. Assessment procedure for structural integrity of hydrogen pipeline system for spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(8): 278-287 (in Chinese).
[10]黄鑫, 齐红宇, 李少林, 等. 焊接接头裂纹扩展行为研究评述与展望[J/OL]. 工程力学, (2023-10-27) [2024-10-19]. https://kns-cnki-net.e1.buaa.edu.cn/kcms/detail/11.2595.O3.20231027.1511.006.html.
HUANG X, QI H Y, LI S L, et al. Review and prospect of research on crack propagation behavior of welded joints[J/OL]. Engineering Mechanics, (2023-10-27) [2024-10-19]. https://kns-cnki-net.e1.buaa.edu.cn/kcms/detail/11.2595.O3.20231027.1511.006.html (in Chinese).
[11]ZHANG H B, LEYGRAF C, JIN Y, et al. The formation of hydride and its influence on Ti–6Al–4V alloy fracture behavior[J]. International Journal of Hydrogen Energy, 2023, 48(92): 36169-36184.
[12]ELI B, NISSIM N, BRIAN R, et al. Microvoids in electrochemically hydrogenated titanium-based alloys[J]. International Journal of Hydrogen Energy, 2021, 46(53): 27234-27242.
[13]LIU X Z, HAN E H, SONG Y W, et al. Hydrogen damage process of dual-phase Ti-6Al-4V alloy: From surface passive film to the interior substrate[J]. Electrochimica Acta, 2023, 464: 142916-1429 27.
[14]NGUYEN T D, SINGH C, LEE D H, et al. Deciphering hydrogen embrittlement mechanisms in Ti6Al4V alloy: Role of solute hydrogen and hydride phase[J]. Materials, 2024, 17(5): 1178-1187.
[15]MURAVEV V I, BAKHMATOV P V, GRIGOREV V V, et al. Features of the hydrogen distribution in a weld seam made by electron beam welding of titanium alloys[J]. Welding International, 2021, 35(10-12): 459-464.
[16]FENG X D, SHI Y, ZHANG W Z, et al. Hydrogen Embrittlement Failure Behavior of Fatigue-Damaged Welded TC4 Alloy Joints[J]. Crystals, 2023, 13(3): 512-525.
[17]DONG Y C, HUANG S, WANG Y Y, et al. Stress corrosion cracking of TC4ELI alloy with different microstructure in 3.5% NaCl solution[J]. Materials Characterization, 2022, 194: 112357.
[18]杨日明, 申秀丽, 董少静. 氢对TC4ELI钛合金微观组织和力学性能影响[J]. 航空动力学报, 2024, XX(XX): XX-XX. (注:已录用,针对不同氢含量的TC4ELI母材件,与本文内容不重复)
YANG R M, SHEN X L, DONG S J. Influence of hydrogen on the microstructure and mechanical properties of TC4ELI titanium alloy[J]. Journal of Aerospace Power, 2024, XX(XX): XX-XX (in Chinese).
[19]杨日明, 申秀丽, 董少静. 氢对TC4ELI钛合金疲劳裂纹扩展行为影响[J]. 材料导报, 2024, XX(XX): XX-XX. (注:已录用)
YANG R M, SHEN X L, DONG S J. Influence of hydrogen on fatigue crack growth behavior of TC4ELI titanium alloy[J]. Materials Reports, 2024, XX(XX): XX-XX (in Chinese).
[20]龚江宏. 准静态纳米压痕的理论基础与数据分析[J]. 陶瓷学报, 2021, 42(02): 181-245.
GONG J H. Theoretical foundation and data analyses of quasi-static nanoindentation[J]. Journal of Ceramics, 2021, 42(2): 181-245 (in Chinese).
[21]OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
[22]韩鹏, 毛智勇, 付鹏飞, 等. 焊后热处理对TC4-DT钛合金电子束焊接接头组织性能的影响[J]. 钛合金焊接技术, 2013, 16: 93-96.
HAN P, MAO Z Y, FU P F, at al. Effect of post-weld heat treatment on microstructure and mechanical properties in TC4-DT EB joint[J]. Titanium Alloy Welding Technology, 2013, 16: 93-96 (in Chinese).
[23]GAO K, LIU Z Y, SHEN X L, et al. Integration of nanoindentation and finite element method for interpretable tensile properties: A cross-scale calculation method of uneven joints[J]. Chinese Journal of Aeronautics, 2023, 36(6): 233-248.
[24]HONG Y J, ZHOU C S, ZHENG Y Y, et al. Hydrogen effect on the deformation evolution process in situ detected by nanoindentation continuous stiffness measurement[J]. Materials Characterization, 2017, 12: 12735.
[25]BIRNBAUM H K, SOFRONIS P. Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture[J]. Materials Science&Engineering:A, 1994, 176(1/2): 191-202.
[26]CHEN C Q, LI S X, LU K, et al. An investigation on structure, deformation and fracture of hydrides in titanium with a large range of hydrogen contents[J]. Acta Materialia, 2004, 52(12): 3697-3706.