合成双射流理论及其赋能航空技术进展
收稿日期: 2025-01-17
修回日期: 2025-02-08
录用日期: 2025-02-11
网络出版日期: 2025-02-12
基金资助
国家自然科学基金(U2141252)
Theory of dual synthetic jets and its empowerment of advancements in aeronautical technology
Received date: 2025-01-17
Revised date: 2025-02-08
Accepted date: 2025-02-11
Online published: 2025-02-12
Supported by
National Natural Science Foundation of China(U2141252)
主动流动控制技术是21世纪航空领域的重要前沿技术之一,而合成双射流技术则是我国自主研发的一种先进主动流动控制技术。该技术具有能量效率高、环境适应性强、控制范围广等优点,有望显著提升现役飞行器的性能,并为下一代飞行器的发展提供变革性助力。系统总结了合成双射流理论、技术特点及其赋能航空技术的最新研究进展。通过20年持续研究,形成了基于两合成射流相互作用同相“增强”效应、异相“矢量”效应、反相“加力/自给”效应的合成双射流理论体系,发展了具有能量效率倍增、全电矢量功能、跨介质工作能力的合成双射流技术体系;合成双射流技术在飞行器气动、动力、飞行控制、飞行安全、热控、跨介质飞行等方面显示出较强的赋能增效特性和应用前景。
罗振兵 , 王浩 , 赵志杰 . 合成双射流理论及其赋能航空技术进展[J]. 航空学报, 2025 , 46(5) : 531821 -531821 . DOI: 10.7527/S1000-6893.2025.31821
Active flow control technology is a frontier and transformative technology in the aviation field of the 21st century. Dual Synthetic Jet (DSJ), a new type of active flow control technology invented in China offering high energy efficiency, strong environmental adaptability, and wide control range, is expected to fully assist in the performance improvement of current aircraft and the revolutionary development of next-generation aircraft. This paper systematically summarizes the theory, technical characteristics, and the latest research progress of DSJ in empowering aviation technology. Through twenty-year research, the DSJ theory system based on the “enhancement” effect, “vector” effect, and “augmentation/self-support” effect existing between double synthetic jets with different phases has been formed. And the DSJ technology system with characteristics of energy efficiency doubling, full electric vectoring, and cross-medium working ability has been developed. DSJ has shown great application prospects in aspects of aircraft aerodynamics, power, flight control, flight safety, thermal control and cross-medium flight.
1 | GREENBLATT D, WILLIAMS D R. Flow control for unmanned air vehicles[J]. Annual Review of Fluid Mechanics, 2022, 54: 383-412. |
2 | 甘文彪, 庄俊杰, 向锦武, 等. 临近空间低动态飞行器螺旋桨流动控制研究进展[J]. 航空学报, 2024, 45(17): 530086. |
GAN W B, ZHUANG J J, XIANG J W, et al. Research progress on flow control of propeller for low dynamic near-space vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530086 (in Chinese). | |
3 | 朱广生, 姚世勇, 段毅. 高速飞行器减阻降热流动控制技术研究进展及工程应用[J]. 航空学报, 2023, 44(15): 529049. |
ZHU G S, YAO S Y, DUAN Y. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529049 (in Chinese). | |
4 | HUADAN C R, LIU Z W, HUO W Z, et al. Optimization of a novel biomimetic vortex generator structure based on cavitation intensity and stability control[J]. Physics of Fluids, 2024, 36(11): 113322. |
5 | NEMATOLLAHI O, NILI-AHMADABADI M, SEO H, et al. Effect of acicular vortex generators on the aerodynamic features of a slender delta wing[J]. Aerospace Science and Technology, 2019, 86: 327-340. |
6 | 李思成, 王晋军, 潘翀, 等. 扰流板作用下湍流/非湍流界面特性[J]. 气体物理, 2022, 7(6): 63-73. |
LI S C, WANG J J, PAN C, et al. Properties of the turbulent/non-turbulent interface under the influence of fence[J]. Physics of Gases, 2022, 7(6): 63-73 (in Chinese). | |
7 | 练真增, 张晖, 阎文成, 等. 基于扰流板的通用飞机横航向稳定性的改善措施研究[J]. 实验流体力学, 2021, 35(5): 34-39. |
LIAN Z Z, ZHANG H, YAN W C, et al. Research on improvement measures of transverse heading of general aircraft based on spoiler[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 34-39 (in Chinese). | |
8 | WEN X, SONG J S, YANG F, et al. Pressure-sensitive paint measurement of a subsonic diffuser controlled by sweeping jets[J]. AIAA Journal, 2022, 60(12): 6963-6970. |
9 | 罗振兵, 谢玮, 解旭祯, 等. 激波及其干扰主动流动控制研究进展[J]. 航空学报, 2023, 44(15): 529002. |
LUO Z B, XIE W, XIE X Z, et al. Research progress of active flow control of shock wave and its interaction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529002 (in Chinese). | |
10 | 仇梓豪, 李子焱, 周楷文, 等. 振荡射流控制方法在无舵面飞行控制中的应用[J]. 实验流体力学, 2023, 37(4): 116-125. |
QIU Z H, LI Z Y, ZHOU K W, et al. Sweeping jet control mechanism and its application in flapless flight control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 116-125 (in Chinese). | |
11 | AIAA names top 10 emerging aerospace technologies of 2009[EB/OL]. [2024-12-31]. . |
12 | FELDSTEIN A W, ULECK K R, FLOYD J, et al. Preliminary design of coplanar joined wing aircraft with integrated active flow control[C]∥AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
13 | GRAY C, ULECK K R, FELDSTEIN A W, et al. Sizing, integration and characterization of an active flow control system[C]∥AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
14 | ZELMAN S, SILIC M, CHAN S N. Integration of active flow control effectors into aircraft control laws[C]∥ AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
15 | 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252-264, 251. |
LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252-264, 251 (in Chinese). | |
16 | GLEZER A, AMITAY M. Synthetic jets[J]. Annual Review of Fluid Mechanics, 2002, 34: 503-529. |
17 | 陆逸然, 王晋军. 高效合成射流激励器研究进展及展望[J]. 力学进展, 2024, 54(1): 61-85. |
LU Y R, WANG J J. Review and prospect on the efficient synthetic jet[J]. Advances in Mechanics, 2024, 54(1): 61-85 (in Chinese). | |
18 | XU C Y, WANG J J. Vortex ring breakdown dominating the entrainment of a synthetic jet[J]. Journal of Fluid Mechanics, 2024, 980: A5. |
19 | SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281-2297. |
20 | VAN BUREN T, WHALEN E, AMITAY M. Achieving a high-speed and momentum synthetic jet actuator[J]. Journal of Aerospace Engineering, 2016, 29(2): 04015040. |
21 | HONG M H, CHENG S Y, ZHONG S. Effect of geometric parameters on synthetic jet: A review[J]. 2020, 32(3): 031301. |
22 | GUNGORDU B, JABBAL M, POPOV A A. Enhancing jet velocity and power conversion efficiency of piezoelectric synthetic jet actuators[J]. AIAA Journal, 2023, 61(10): 4321-4331. |
23 | 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221-234. |
LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221-234 (in Chinese). | |
24 | 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学(技术科学), 2008, 38(3): 321-349. |
ZHANG P F, WANG J J, FENG L H. Research progress of zero mass jet technology and its application[J]. Science in China (Technologica), 2008, 38(3): 321-349 (in Chinese). | |
25 | GRECO C S, CARDONE G, SORIA J. On the behaviour of impinging zero-net-mass-flux jets[J]. Journal of Fluid Mechanics, 2017, 810: 25-59. |
26 | 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科技大学, 2006. |
LUO Z B. Mechanism of synthetic jet/synthetic double jet and its application in jet vector control and micropump[D]. Changsha: National University of Defense Technology, 2006 (in Chinese). | |
27 | LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA Journal, 2006, 44(10): 2418-2420. |
28 | 罗振兵. 合成射流流动机理及应用技术研究[D]. 长沙: 国防科技大学, 2002. |
LUO Z B. Study on flow mechanism and application technology of synthetic jet[D]. Changsha: National University of Defense Technology, 2002 (in Chinese). | |
29 | YONG L. Control of two dimensional jets using miniature zero mass flux jets[J]. Chinese Journal of Aeronautics, 2000, 13(3): 129-133. |
30 | TRáVN???EK Z, TESA? V. Annular synthetic jet used for impinging flow mass-transfer[J]. International Journal of Heat and Mass Transfer, 2003, 46(17): 3291-3297. |
31 | LEE C, HONG G, HA Q P, et al. A piezoelectrically actuated micro synthetic jet for active flow control[J]. Sensors and Actuators A: Physical, 2003, 108(1-3): 168-174. |
32 | RUMSEY C L, GATSKI T B, SELLERS W L, et al. Summary of the 2004 computational fluid dynamics validation workshop on synthetic jets[J]. AIAA Journal, 2006, 44(2): 194-207. |
33 | SMITH B, TRAUTMAN M, GLEZER A. Controlled interactions of adjacent synthetic jets[C]∥37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
34 | SMITH B L, GLEZER A. Vectoring of adjacent synthetic jets[J]. AIAA Journal, 2005, 43(10): 2117-2124. |
35 | 高峰, 汪亮. 双微射流作动器合成流场数值模拟[J]. 空气动力学学报, 2003, 21(3): 267-274. |
GAO F, WANG L. Numerical study on synthetic flow field of adjacent microjet actuators[J]. Acta Aerodynamica Sinica, 2003, 21(3): 267-274 (in Chinese). | |
36 | 罗振兵, 夏智勋, 胡建新, 等. 相邻激励器合成射流流场数值模拟及机理研究[J]. 空气动力学学报, 2004, 22(1): 52-59. |
LUO Z B, XIA Z X, HU J X, et al. Numerical simulation and mechanism study of the interaction of adjacent synthetic jet actuators[J]. Acta Aerodynamica Sinica, 2004, 22(1): 52-59 (in Chinese). | |
37 | BERK T, GOMIT G, GANAPATHISUBRAMANI B. Vectoring of parallel synthetic jets: A parametric study[J]. Journal of Fluid Mechanics, 2016, 804: 467-489. |
38 | JANKEE G K, GANAPATHISUBRAMANI B. Interaction and vectoring of parallel rectangular twin jets in a turbulent boundary layer[J]. Physical Review Fluids, 2021, 6(4): 044701. |
39 | LUO Z B, XIA Z X. The mechanism of jet vectoring using synthetic jet actuators[J]. Modern Physics Letters B, 2005, 19(28-29): 1619-1622. |
40 | 邓雄, 夏智勋, 罗振兵, 等. 非对称出口合成双射流激励器矢量特性实验研究[J]. 航空学报, 2015, 36(2): 510-517. |
Deng X, Xia Z X, Luo Z B, et al. Experimental investigation on the vectoring characteristic of dual synthetic jets actuator with asymmetricexits[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(2):510-517 (in Chinese). | |
41 | LIU Z Y, LUO Z B, LIU Q, et al. Self-support phenomenon and formation characteristics of dual synthetic jet[J]. Sensors and Actuators A: Physical, 2019, 299: 111597. |
42 | 邓雄. 合成双射流矢量控制特性及其强化换热应用研究[D]. 长沙: 国防科技大学, 2015. |
DENG X. Study on vector control characteristics of synthetic double jet and its application in enhancing heat transfer[D]. Changsha: National University of Defense Technology, 2015 (in Chinese). | |
43 | 张攀峰, 燕波, 戴晨峰. 合成射流环量控制翼型增升技术[J]. 中国科学(技术科学), 2012, 42(9): 1046-1053. |
ZHANG P F, YAN B, DAI C F. Lift enhancement method by synthetic jet circulation control[J]. Scientia Sinica (Technologica), 2012, 42(9): 1046-1053 (in Chinese). | |
44 | 张艳华, 张登成, 周章文, 等. 基于环量控制的虚拟舵面飞行器概念与设计综述[J]. 航空学报, 2024, 45(6): 629608. |
ZHANG Y H, ZHANG D C, ZHOU Z W, et al. Concept and design of virtual rudder surface aircraft based on circulation control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629608 (in Chinese). | |
45 | LI S Q, LUO Z B, DENG X, et al. Numerical simulation investigation on the suction stroke and blowing stroke of synthetic jet circulation control[J]. Acta Mechanica Sinica, 2022, 39(6): 322352. |
46 | LI S Q, LUO Z B, DENG X, et al. Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2022, 35(12): 117-129. |
47 | LUO Z B, ZHAO Z J, LIU J F, et al. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test[J]. Chinese Journal of Aeronautics, 2022, 35(8): 1-6. |
48 | 王万波, 姜裕标, 黄勇, 等. 大型飞机襟翼吹气增升风洞试验[J]. 航空学报, 2023, 44(13): 127870. |
WANG W B, JIANG Y B, HUANG Y, et al. Lift enhancement wind tunnel test with flap blowing for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127870 (in Chinese). | |
49 | 张刘, 姜裕标, 何萌, 等. 内吹式襟翼控制机理和失速特性[J]. 空气动力学学报, 2021, 39(5): 53-62. |
ZHANG L, JIANG Y B, HE M, et al. Stall characteristics and circulation control of internally blown flap[J]. Acta Aerodynamica Sinica, 2021, 39(5): 53-62 (in Chinese). | |
50 | ALEY K S, GUHA T K, KUMAR R. Active flow control of a high-lift supercritical airfoil with microjet actuators[J]. AIAA Journal, 2020, 58(5): 2053-2069. |
51 | DESALVO M, WHALEN E, GLEZER A. High-lift performance enhancement using active flow control[J]. AIAA Journal, 2020, 58(10): 4228-4242. |
52 | 张鉴源, 罗振兵, 彭文强, 等. 基于合成双射流的襟翼舵效增强技术研究[J]. 实验流体力学, 2023, 37(4): 76-86. |
ZHANG J Y, LUO Z B, PENG W Q, et al. Investigation on performance enhancement of flap based on dual synthetic jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 76-86 (in Chinese). | |
53 | 王海峰. 高性能协同作战无人机的发展与思考[J]. 航空学报, 2024, 45(17): 530304. |
WANG H F. Development of high performance collaborative combat UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530304 (in Chinese). | |
54 | WANG Q M, FENG L H, LI X. Experimental investigation of synthetic jet control of wing rock for a flying wing aircraft[J]. 2023, 35(5): 054111. |
55 | 冯立好, 魏凌云, 董磊, 等. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 527353. |
FENG L H, WEI L Y, DONG L, et al. Active flow control for coupled motion instability of flying-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527353 (in Chinese). | |
56 | 王方剑, 解克, 刘金, 等. 小展弦比飞翼标模非定常流动及自由摇滚特性[J]. 航空学报, 2023, 44(4): 126449. |
WANG F J, XIE K, LIU J, et al. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126449 (in Chinese). | |
57 | VEISMANN M, GHARIB M, TAUBERT L, et al. Effect of leading-edge cranks on stability and control of active-flow-control-enabled tailless aircraft[J]. AIAA Journal, 2023, 61(9): 3848-3865. |
58 | 张杰, 李王斌, 王争取, 等. 小展弦比飞翼标模跨声速横向失稳运动[J]. 航空学报, 2022, 43(11): 526340. |
ZHANG J, LI W B, WANG Z Q, et al. Transonic lateral departure motion characteristics of a low-aspect-ratio flying-wing model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526340 (in Chinese). | |
59 | L?CHERT P, HUBER K C, GHOREYSHI M, et al. Control device effectiveness studies of a 53° swept flying wing configuration. Experimental, computational, and modeling considerations[J]. Aerospace Science and Technology, 2019, 93: 105319. |
60 | ZHAO Z J, LUO Z B, DENG X, et al. Effects of dual synthetic jets on longitudinal aerodynamic characteristics of a flying wing layout[J]. Aerospace Science and Technology, 2023, 132: 108043. |
61 | 邓雄, 赵志杰, 王秋旺, 等. 基于前缘合成双射流的飞翼布局纵向气动控制特性研究[J]. 空气动力学学报, 2022, 40(5): 79-90. |
DENG X, ZHAO Z J, WANG Q W, et al. Research on longitudinal aerodynamic control characteristics of flying wing based on leading-edge dual synthetic jets[J]. Acta Aerodynamica Sinica, 2022, 40(5): 79-90 (in Chinese). | |
62 | 王磊, 王立新, 贾重任. 飞翼布局飞机开裂式方向舵的作用特性和使用特点[J]. 航空学报, 2011, 32(8): 1392-1399. |
WANG L, WANG L X, JIA Z R. Control features and application characteristics of split drag rudder utilized by flying wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1392-1399 (in Chinese). | |
63 | 张子军, 黎军, 李天, 等. 开裂式方向舵对某无尾飞翼布局飞机气动特性影响的实验研究[J]. 实验流体力学, 2010, 24(3): 63-66. |
ZHANG Z J, LI J, LI T, et al. Experimental investigation of split-rudder deflection on aerodynamic performance of tailless flying-wing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 63-66 (in Chinese). | |
64 | 周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报, 2020, 41(6): 523422. |
ZHOU Z, YU Y G, LIU G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523422 (in Chinese). | |
65 | 单继祥, 黄勇, 苏继川, 等. 小展弦比飞翼布局新型嵌入面航向控制特性研究[J]. 空气动力学学报, 2015, 33(3): 296-301. |
SHAN J X, HUANG Y, SU J C, et al. Effect of the novel embedded control surfaces on direction control characteristic of low-aspect-ratio flying-wing configuration[J]. Acta Aerodynamica Sinica, 2015, 33(3): 296-301 (in Chinese). | |
66 | 张彬乾, 马怡, 褚胡冰, 等. 小展弦比飞翼布局航向控制的组合舵面研究[J]. 航空学报, 2013, 34(11): 2435-2442. |
ZHANG B Q, MA Y, CHU H B, et al. Investigation on combined control surfaces for the yaw control of low aspect ratio flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2435-2442 (in Chinese). | |
67 | STENFELT G, RINGERTZ U. Lateral stability and control of a tailless aircraft configuration[J]. Journal of Aircraft, 2009, 46(6): 2161-2164. |
68 | ZHAO Z J, LUO Z B, DENG X, et al. Novel yaw effector of a flying wing aircraft based on reverse dual synthetic jets[J]. Chinese Journal of Aeronautics, 2023, 36(12): 151-163. |
69 | ZHAO Z J, DENG X, LUO Z B, et al. Numerical investigation of aerodynamic characteristics of a flying wing aircraft controlled by reverse dual synthetic jets[J]. 2023, 35(5): 057110. |
70 | WANG H, LUO Z B, DENG X, et al. Enhancement of flying wing aerodynamics in crossflow at high angle of attack using dual synthetic jets[J]. Aerospace Science and Technology, 2025, 156: 109773. |
71 | 王浩, 罗振兵, 邓雄, 等. 基于合成双射流的翼型阵风载荷减缓[J]. 航空学报, 2024, 45(16): 129660. |
WANG H, LUO Z B, DENG X, et al. Airfoil gust load alleviation based on dual synthetic jets[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 129660 (in Chinese). | |
72 | ZHOU Y H, GU Y S, LI L K, et al. Research on fluidic thrust vector technology based on passive secondary flow with dual inclined walls under low subsonic speed[J]. Experimental Thermal and Fluid Science, 2024, 155: 111200. |
73 | 龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 123609. |
GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123609 (in Chinese). | |
74 | 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. |
XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15 (in Chinese). | |
75 | SMITH B L, GLEZER A. Jet vectoring using synthetic jets[J]. Journal of Fluid Mechanics, 2002, 458: 1-34. |
76 | LUO Z B, XIA Z X, XIE Y G. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2007, 20(3): 193-201. |
77 | LIU J F, LUO Z B, DENG X, et al. Dual synthetic jets actuator and its applications: PartⅡ: Novel fluidic thrust-vectoring method based on dual synthetic jets actuator[J]. Actuators, 2022, 11(8): 209. |
78 | BRANDT S, MCLAUGHLIN T E, WILLIAMS D R, et al. NATO AVT-239 task group: flight test of compressed and bleed-air driven control effectors on the ICE/SACCON UAS subscale aircraft[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
79 | NIESTROY M A, WILLIAMS D R, SEIDEL J. NATO AVT-239 task group: Active flow control simulation of the tailless ICE aircraft[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
80 | WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal, 2018, 56(10): 3808-3824. |
81 | YARF-ABBASI A, FIELDING J. Design integration of the eclipse and demon demonstrator UAVs[C]∥7th AIAA ATIO Conf, 2nd CEIAT Int’l Conf on Innov and Integr in Aero Sciences, 17th LTA Systems Tech Conf; followed by 2nd TEOS Forum. Reston: AIAA, 2007. |
82 | WARSOP C, CROWTHER W. NATO AVT-239 task group: flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
83 | 孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 124080. |
SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124080 (in Chinese). | |
84 | CHEN K, SHI Z W, ZHU J C, et al. Roll aerodynamic characteristics study of an unmanned aerial vehicle based on circulation control technology[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(3): 871-882. |
85 | 张同任, 吕心悦, 徐悦, 等. 吹气射流飞控飞行器设计及试飞验证[J]. 航空科学技术, 2020, 31(5): 50-55. |
ZHANG T R, LV X Y, XU Y, et al. Design and flight test verification of fluidic flight control aircraft[J]. Aeronautical Science & Technology, 2020, 31(5): 50-55 (in Chinese). | |
86 | 邵帅, 郭正, 贾高伟, 等. 中等展弦比飞翼布局无人机后缘射流滚转控制[J]. 航空学报, 2023, 44(10): 54-64. |
SHAO S, GUO Z, JIA G W, et al. Roll control of medium-aspect-ratio flying-wing UCAV based on trailing-edge jet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 54-64 (in Chinese). | |
87 | 张刘, 黄勇, 陈辅政, 等. 基于环量控制的无尾飞翼俯仰和滚转两轴无舵面姿态控制飞行试验[J]. 航空学报, 2023, 44(18): 128224. |
ZHANG L, HUANG Y, CHEN F Z, et al. Rudderless attitude control flight test based on circulation control of tailless flying wing in pitch and roll axes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128224 (in Chinese). | |
88 | 赵志杰, 罗振兵, 刘杰夫, 等. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验[J]. 力学学报, 2022, 54(5): 1220-1228. |
ZHAO Z J, LUO Z B, LIU J F, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1220-1228 (in Chinese). | |
89 | ZHAO Z J, ZHANG J Y, DENG X, et al. Flight test of flying wing aircraft controlled by dual synthetic jets at Ma0.2[J]. Aerospace Science and Technology, 2024, 144: 108779. |
90 | 任靖豪, 王强, 陈宁立, 等. 多段翼构型结冰计算方法及结冰影响分析[J]. 航空学报, 2024, 45(14): 129328. |
REN J H, WANG Q, CHEN N L, et al. Numerical simulation and aerodynamic performance effects of multi-element airfoil ice accretion[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 129328 (in Chinese). | |
91 | WU Y, WEI B, LIANG H, et al. Flight safety oriented ice shape modulation using distributed plasma actuator units[J]. Chinese Journal of Aeronautics, 2021, 34(10): 1-5. |
92 | XIE L K, LIANG H, ZONG H H, et al. Multipurpose distributed dielectric-barrier-discharge plasma actuation: Icing sensing, anti-icing, and flow control in one[J]. 2022, 34(7): 071701. |
93 | 孟宣市, 惠伟伟, 易贤, 等. AC-SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31-49. |
MENG X S, HUI W W, YI X, et al. Anti-/de-icing by AC-SDBD plasma actuators: status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31-49 (in Chinese). | |
94 | 孟宣市, 宋科, 龙玥霄, 等. NS-SDBD等离子体流动控制研究现状与展望[J]. 空气动力学学报, 2018, 36(6): 901-916. |
MENG X S, SONG K, LONG Y X, et al. Airflow control by NS-SDBD plasma actuators[J]. Acta Aerodynamica Sinica, 2018, 36(6): 901-916 (in Chinese). | |
95 | GAO T X, LUO Z B, ZHOU Y, et al. Reducing the contact time of impacting droplets on superhydrophobic surfaces using dual synthetic jets[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108095. |
96 | 高天翔, 罗振兵, 周岩, 等. 合成双射流控制水滴轨迹特性实验研究[J]. 航空学报, 2025, doi: 10.7527/S1000-6893.2024.30833 . |
GAO T X, LUO Z B, ZHOU Y, et al. Experimental investigation on the trajectory characteristics of a single micro water droplet controlled by dual synthetic jet actuator[J]. Acta Aeronautica et Astronautica Sinica, 2025, doi: 10.7527/S1000-6893.2024.30833 (in Chinese). | |
97 | 李玉杰. 基于合成双射流的机翼分离流控制及结冰控制研究[D]. 长沙: 国防科技大学, 2015. |
LI Y J. Research on airfoil separate flow control and airfoil icing control using dual synthetic jet actuator[D]. Changsha: National University of Defense Technology, 2015 (in Chinese). | |
98 | 蒋浩. 合成热射流防/除冰技术研究[D]. 长沙: 国防科技大学, 2017. |
JIANG H. Research on anti-icing/de-icing using the heated dual synthetic jet technology[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
99 | YANG S K, YI X, GUO Q L, et al. Novel hybrid ice protection system combining thermoelectric system and synthetic jet actuator[J]. AIAA Journal, 2020, 59(4): 1496-1500. |
100 | WANG Y N, WANG L, ZHOU Y, et al. Research progress on transpiration cooling technology in force-thermal concentrated environments[J]. International Journal of Heat and Mass Transfer, 2025, 236: 126262. |
101 | ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences, 2020, 119: 100646. |
102 | DENG X, LUO Z B, XIA Z X, et al. Active-passive combined and closed-loop control for the thermal management of high-power LED based on a dual synthetic jet actuator[J]. Energy Conversion and Management, 2017, 132: 207-212. |
103 | DENG X, DONG Z F, LIU Q, et al. Dual synthetic jets actuator and its applications: Part Ⅲ: Impingement flow field and cooling characteristics of vectoring dual synthetic jets[J]. Actuators, 2022, 11(12): 376. |
104 | DENG X, XIA Z X, LUO Z B, et al. Vector-adjusting characteristic of dual-synthetic-jet actuator[J]. AIAA Journal, 2014, 53(3): 794-797. |
105 | HE W, LUO Z B, DENG X, et al. A novel spray cooling device based on a dual synthetic jet actuator integrated with a piezoelectric atomizer[J]. Heat and Mass Transfer, 2020, 56(5): 1551-1563. |
106 | 何伟. 合成双射流喷雾与强化换热特性研究[D]. 长沙: 国防科技大学, 2019. |
HE W. Study on the spray and its characteristics of heat transfer enhancement based on dual synthetic jets[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
107 | HE W, LUO Z B, DENG X, et al. Experimental investigation on the performance of a novel dual synthetic jet actuator-based atomization device[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118406. |
108 | HE W, LUO Z B, DENG X, et al. Experimental investigation on the vectoring spray based on a novel synthetic jet actuator[J]. Applied Thermal Engineering, 2020, 179: 115677. |
109 | LUO Z B, HE W, DENG X, et al. A compacted non-pump self-circulation spray cooling system based on dual synthetic jet referring to the principle of two-phase loop thermosyphon[J]. Energy, 2023, 263: 125757. |
110 | KANG Y, LUO Z B, DENG X, et al. Numerical study of a liquid cooling device based on dual synthetic jets actuator[J]. Applied Thermal Engineering, 2023, 219: 119691. |
111 | KANG Y, XIA Z X, LUO Z B, et al. Experimental study on a dual synthetic jets liquid cooling device[J]. Applied Energy, 2024, 372: 123865. |
112 | WANG Q F, ZHANG S Q, ZHANG Y, et al. Enhancing performance of nanofluid mini-channel heat sinks through machine learning and multi-objective optimization of operating parameters[J]. International Journal of Heat and Mass Transfer, 2023, 210: 124204. |
113 | LALAGI G, NAGARAJ P B, TALUGERI V, et al. Study on heat transfer and pressure drop characteristics for nanofluids in microchannel heat exchangers[J]. 2023, 35(10): 102015. |
114 | MOHAMMADPOUR J, LEE A, MOZAFARI M, et al. Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models[J]. International Journal of Thermal Sciences, 2021, 161: 106705. |
115 | LAU G E, MOHAMMADPOUR J, LEE A. Cooling performance of an impinging synthetic jet in a microchannel with nanofluids: an Eulerian approach[J]. Applied Thermal Engineering, 2021, 188: 116624. |
116 | 董昭锋, 邓雄, 罗振兵, 等. 基于合成双射流的Al2O3纳米流体散热数值研究[J]. 空气动力学学报, 2024, 42(8): 10-22. |
DONG Z F, DENG X, LUO Z B, et al. Numerical investigation on heat dissipation of Al2O3 nanofluid based on dual synthetic jets[J]. Acta Aerodynamica Sinica, 2024, 42(8): 10-22 (in Chinese). | |
117 | 彭磊. 水下合成双射流流场特性与推力特性研究[D]. 长沙: 国防科技大学, 2016. |
PENG L. Research on characteristics of flow field and propulsion of underwater dual synthetic jets[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). |
/
〈 |
|
〉 |