连续压缩感知叶端定时频率估计方法

  • 金若尘 ,
  • 杨志勃 ,
  • 杨来浩 ,
  • 乔百杰 ,
  • 冯军楠 ,
  • 张欢 ,
  • 杨志军 ,
  • 陈雪峰
展开
  • 1. 西安交通大学
    2. 中国航发商用航空发动机有限责任公司
    3. 西安交通大学机械工程学院

收稿日期: 2024-12-06

  修回日期: 2025-02-06

  网络出版日期: 2025-02-10

基金资助

国家自然科学基金委重大研究计划集成项目;国家自然科学基金委优青项目

Frequency Estimation Method for Blade Tip Timing Using Continuous Compressed Sensing

  • JIN Ruo-Chen ,
  • YANG Zhi-Bo ,
  • YANG Lai-Hao ,
  • QIAO Bai-Jie ,
  • FENG Jun-Nan ,
  • ZHANG Huan ,
  • YANG Zhi-Jun ,
  • CHEN Xue-Feng
Expand

Received date: 2024-12-06

  Revised date: 2025-02-06

  Online published: 2025-02-10

摘要

由于工作环境恶劣,涡轮机械的旋转叶片极易发生故障,危机设备的安全运行。因此,开展叶片相关的监测诊断研究十分重要。叶端定时作为一种十分有潜力的测量技术,只需少数探头就能监测一级所有叶片。然而,由于探头数量有限,叶端定时信号面临严重欠采样,因此,实现高精度的信号重构是该领域的研究热点。基于连续压缩感知的无网格频率估计方法被认为是解决该问题的重要途径,但其只适用于均匀布局下获取的理想信号,这严重限制了其在真实叶端定时信号中的应用。本文提出了一种不受探头布局限制的无网格频率估计方法,以突破传统无网格法的局限性。首先,构造一种基于流形分离的范德蒙德分解,有效消除了不规则探头布局对信号协方差矩阵的影响,使得从不规则Toeplitz矩阵中准确恢复频率成为可能。在此基础上提出交替投影算法实现不规则布局下的无网格频率估计。最后,仿真和实验表明所提出方法在鲁棒性、高分辨率以及估计精度等方面具有显著优势。

本文引用格式

金若尘 , 杨志勃 , 杨来浩 , 乔百杰 , 冯军楠 , 张欢 , 杨志军 , 陈雪峰 . 连续压缩感知叶端定时频率估计方法[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31620

Abstract

Due to the harsh operating environment, turbine blades are highly prone to failure, posing significant risks to equipment safety. Therefore, research on blade monitoring and diagnosis is of critical importance. Blade Tip-Timing (BTT) is a promising measure-ment technique that enables the monitoring of all blades within a stage using only a small number of probes. However, due to the limited number of probes, BTT signals often suffer from severe undersampling, making high-accuracy signal reconstruction a key research focus in this field. Gridless frequency estimation methods based on continuous compressed sensing have been considered an effective solution to this issue. However, these traditional methods are limited to ideal signals obtained under uniform probe lay-outs, significantly restricting their applicability to real-world BTT signals. To address this limitation, this paper proposes a gridless frequency estimation method that is independent of probe layout, overcoming the constraints of traditional gridless approaches. First, a manifold separation-based Vandermonde decomposition is developed, effectively eliminating the impact of irregular probe layouts on the signal covariance matrix, enabling accurate frequency recovery from irregular Toeplitz matrices. Based on this, an alternating projection algorithm is proposed to achieve gridless frequency estimation under irregular layouts. Finally, extensive simulations and experiments demonstrate that the proposed method exhibits significant advantages in robustness, high resolution, and estimation accuracy.

参考文献

[1] Heath S, Imregun M. An improved single-parameter tip-timing method for turbomachinery blade vibration measurements using optical laser probes[J]. International journal of mechanical sciences, 1996, 38(10): 1047-1058.
[2] Dimitriadis G, Carrington I B, Wright J R, et al. Blade-tip timing measurement of synchronous vibrations of rotating bladed assemblies[J]. Mechanical Systems and Signal Processing, 2002, 16(4): 599-622.
[3] Zablotskiy I Y, Korostelev Y A. Measurement of resonance vibrations of turbine blades with the ELURA device[R]. Foreign Technology Div Wright-Patterson AFB OH, 1978.
[4] Li H, Fan Z, Dong J, et al. An improved blade vibration difference-based two-parameter plot method for synchronous vibration parameter identification of rotating blades[J]. Measurement, 2023, 207: 112397.
[5] Heath S. A new technique for identifying synchronous resonances using tip-timing[J]. J. Eng. Gas Turbines Power, 2000, 122(2): 219-225.
[6] Guru S S, Shylaja S, Kumar S, et al. Pre-emptive Rotor Blade Damage Identification by Blade Tip Timing Method[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(7).
[7] Bastami A R, Safarpour P, Mikaeily A, et al. Identification of asynchronous blade vibration parameters by linear regression of blade tip timing data[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(7).
[8] Joung K K, Kang S C, Paeng K-S, et al. Analysis of vibration of the turbine blades using non-intrusive stress measurement system[C]. ASME Power Conference, 2006: 391-397.
[9] Yang L, Mao Z, Chen X, et al. Dynamic coupling vibration of rotating shaft–disc–blade system — Modeling, mechanism analysis and numerical study[J]. Mechanism and Machine Theory, 2022, 167.
[10] Wu Z, Yan H, Zhao L, et al. Axial-bending coupling vibration characteristics of a rotating blade with breathing crack[J]. Mechanical Systems and Signal Processing, 2023, 182.
[11] Vercoutter A, Berthillier M, Talon A, et al. Tip timing spectral estimation method for aeroelastic vibrations of turbomachinery blades[C]. International Forum on Aeroelasticity and Structural Dynamics (IFASD), Paris, France, June, 2011: 26-30.
[12] Wang P, Karg D, Fan Z, et al. Non-contact identification of rotating blade vibration[J]. Mechanical Engineering Journal, 2015, 2(3): 15-00025-15-00025.
[13] Wang Z, Yang Z, Teng G, et al. Amplitude-Identifiable MUSIC (Aid-MUSIC) for Asynchronous Frequency in Blade Tip Timing[J]. IEEE Transactions on Industrial Informatics, 2022.
[14] Liu Z B, Duan F J, Niu G Y, et al. Reconstruction of blade tip-timing signals based on the MUSIC algorithm[J]. Mechanical Systems and Signal Processing, 2022, 163.
[15] Lin J, Hu Z, Chen Z-S, et al. Sparse reconstruction of blade tip-timing signals for multi-mode blade vibration monitoring[J]. Mechanical Systems and Signal Processing, 2016, 81: 250-258.
[16] Bouchain A, Picheral J, Lahalle E, et al. Blade vibration study by spectral analysis of tip-timing signals with OMP algorithm[J]. Mechanical Systems and Signal Processing, 2019, 130: 108-121.
[17] Wu S, Russhard P, Yan R, et al. An adaptive online blade health monitoring method: From raw data to parameters identification[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(5): 2581-2592.
[18] Dong J, Li H, Fan Z, et al. Characteristics analysis of blade tip timing signals in synchronous resonance and frequency recovery based on subspace pursuit algorithm[J]. Mechanical Systems and Signal Processing, 2023, 183: 109632.
[19] Chi Y, Scharf L L, Pezeshki A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182-2195.
[20] Bernhardt S, Boyer R, Marcos S, et al. Compressed sensing with basis mismatch: Performance bounds and sparse-based estimator[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3483-3494.
[21] Fang J, Wang F, Shen Y, et al. Super-resolution compressed sensing for line spectral estimation: An iterative reweighted approach[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4649-4662.
[22] Zhu H, Leus G, Giannakis G B. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002-2016.
[23] Pisarenko V F. The retrieval of harmonics from a covariance function[J]. Geophysical Journal International, 1973, 33(3): 347-366.
[24] Tang G, Bhaskar B N, Shah P, et al. Compressed sensing off the grid[J]. IEEE transactions on information theory, 2013, 59(11): 7465-7490.
[25] Bhaskar B N, Tang G, Recht B. Atomic norm denoising with applications to line spectral estimation[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5987-5999.
[26] Chi Y, Da Costa M F. Harnessing sparsity over the continuum: Atomic norm minimization for superresolution[J]. IEEE Signal Processing Magazine, 2020, 37(2): 39-57.
[27] Jin R, Yang L, Yang Z, et al. The connection between digital-twin model and physical space for rotating blade: an atomic norm-based BTT undersampled signal reconstruction method[J]. Structural and Multidisciplinary Optimization, 2023, 66(1): 27.
文章导航

/