基于数据融合—知识迁移方法的高温DIC试验应力表征

  • 郭程洁 ,
  • 徐典 ,
  • 李进宝 ,
  • 程超宇 ,
  • 郭硕昌 ,
  • 李锐
展开
  • 大连理工大学

收稿日期: 2024-11-26

  修回日期: 2025-01-28

  网络出版日期: 2025-02-10

基金资助

国家自然科学基金;国家自然科学基金;国防基础科研计划项目

Stress characterization of high-temperature DIC experiments based on a data fusion-knowledge transfer method

  • GUO Cheng-Jie ,
  • XU Dian ,
  • LI Jin-Bao ,
  • CHENG Chao-Yu ,
  • GUO Shuo-Chang ,
  • LI Rui
Expand

Received date: 2024-11-26

  Revised date: 2025-01-28

  Online published: 2025-02-10

摘要

数字图像相关(Digital Image Correlation, DIC)试验系统因其能够实现对全场应变的非接触式精确测量,被广泛应用于高温环境下结构的力学性能评估。然而,基于DIC测量技术的试验方法难以直接表征结构应力场,且高温环境下材料参数与温度密切相关,有限元法高度依赖材料参数而导致应力结果精度不足。因此,如何结合高温DIC试验与有限元法实现结构全场应力的精确表征,对理解和测评结构的力学性能具有重要意义。本文提出了一种高温DIC试验应力表征的数据融合—知识迁移方法,针对航空结构中典型高温钛合金搭建了高温DIC试验系统、高精度有限元模型以及迁移学习框架,实现了基于小样本试验数据的高精度应力场表征。首先,基于多层感知机神经网络对大样本仿真数据进行预训练,捕捉复杂高温环境下结构坐标与应力间的映射关系;其次,基于小样本高温DIC试验数据对预训练模型进行微调,表征了高温环境下的结构应力场,将有限元模型中的知识有效迁移至试验数据;最后,利用均方误差和决定系数等指标,验证了所提方法用于结构应力场预测的准确性及适用性,为表征高温环境下的试验应力场提供了一种新思路。

本文引用格式

郭程洁 , 徐典 , 李进宝 , 程超宇 , 郭硕昌 , 李锐 . 基于数据融合—知识迁移方法的高温DIC试验应力表征[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31574

Abstract

The Digital Image Correlation (DIC) experimental system is widely used for mechanical performance evaluation of structures under high-temperature environments due to its ability to achieve non-contact precise measurements of full-field strain. Howev-er, experimental methods based on DIC measurement technology face challenges in directly characterizing the stress field of structures, particularly in high-temperature environments where material parameters are closely related to temperature, and the heavy reliance of the finite element method (FEM) on these parameters leads to insufficient accuracy of stress outcomes. There-fore, it is of great significance to understand and evaluate the mechanical properties of structures by combining high-temperature DIC experiments and FEM to accurately characterize the full-field stress of structures. This paper proposes a data fusion-knowledge transfer method for stress characterization in high-temperature DIC experiments. A high-temperature DIC experimental system, a high-precision FEM model, and a transfer learning framework are developed for typical high-temperature titanium alloys in aerospace structures, achieving accurate characterization of stress fields based on small-sample experimental data. Firstly, a multi-layer perceptron neural network is employed to pre-train large-sample simulation data, cap-turing the mapping relationship between structural coordinates and stress under complex high-temperature environments; sec-ondly, based on small-sample high-temperature DIC test data, the pre-trained model is fine-tuned to characterize a structural stress field under high-temperature environments, and effectively transferring knowledge from the finite element model to the experimental data; finally, the accuracy and applicability of the proposed method for predicting structural stress fields are veri-fied using indicators such as the mean square error and the coefficient of determination, providing a new approach for character-izing experimental stress fields under high-temperature environments.

参考文献

[1]许璐瑶, 辛朝阳, 王丽明.航空内燃机用钛合金高温压缩成形特性分析[J].锻压装备与制造技术, 2024, 59(04):144-146
[2]冯贞伟, 蒋少松, 康良炜.航空领域用铝锂合金高温变形性能及组织变化规律[J].锻压技术, 2024, 49(09):186-194
[3]戴亚光, 王东, 万小朋.金属复合材料混合连接结构高温承载特性与失效行为研究[J].机械科学与技术, 2023, 42(10):1753-1759
[4]秦强, 张翔宇, 郭翔.基于数字图像的高温光学变形测量方法研究[J].航空科学技术, 2021, 32(10):1-11
[5]王迎朝, 祁俊峰, 邵珩, et al.高温数字图像相关方法关键技术研究[J].新技术新工艺, 2022, (05):45-50
[6]王亮, 刘帅, 张悦.方法在钛合金高温拉伸及泊松比试验中的应用[J].失效分析与预防, 2023, 18(06):374-379
[7]White F.Data Fusion Lexicon[C]. San Diego, CA, USA, 1991.
[8]Meng T, Jing X, Yan Z, et al.A survey on machine learning for data fusion[J].Information Fusion, 2020, 57:115-129
[9]Zhang J, Zhang J, Teng S, et al.Structural Dam-age Detection Based on Vibration Signal Fusion and Deep Learning[J].Journal of Vibration Engineer-ing & Technologies, 2022, 10(4):1205-1220
[10]温志辉, 夏桂锁, 刘芳.飞机蒙皮接缝特征的数据融合算法[J].传感技术学报, 2024, 37(04):629-638
[11]杨华, 陈树生, 高正红.基于贝叶斯框架的旋翼气动力数据融合[J].航空学报, 2024, 45(8):128960-
[12]刘涵, 刘勤明, 叶春明, et al.多源数据融合的航空发动机轴承智能故障诊断[J].计算机集成制造系统,, 2024, :1-36
[13]Khaleghi B, Khamis A, Karray FO, et al.Multisensor data fusion: A review of the state-of-the-art[J].Infor-mation Fusion, 2013, 14(1):28-44
[14]Zheng Y.Methodologies for cross-domain data fusion: an overview[J].IEEE Transactions on Big Data, 2015, 1(1):16-34
[15]Chandra R, Kapoor A.Bayesian neural multi-source transfer learning[J].Neurocomputing, 2020, 378:54-64
[16]崔榕峰, 李鸿岩, 王祥云.基于迁移学习的飞行器高低阶精度数据融合方法[J].飞行力学, 2024, 42(04):7-12
[17]Zhuang Y, Siyuan W, Shang Y, et al.Virtual–Real Fu-sion-Based Transfer Learning With Limited Data for Gearbox Fault Diagnosis[J].IEEE Sensors Journal, 2024, 24(3):3420-3430
[18]Zhang Y, Yan X, Xiao P, et al.A fault diagnosis method for bearings and gears in rotating machinery based on data fusion and transfer learning[J].Measurement Sci-ence and Technology, 2025, 36(1):016104-
[19]Wang B, Li Z, Xu Z, et al.Digital twin modeling for structural strength monitoring via transfer learning-based multi-source data fusion[J].Mechanical Systems and Signal Processing, 2023, 200:110625-
[20]吴大方, 林鹭劲, 吴文军.极端高温环境下高超声速飞行器轻质隔热材料热振联合试验[J].航空学报, 2020, 41(7):223612-
文章导航

/