多源信息融合发展及展望

  • 何友 ,
  • 刘瑜 ,
  • 李耀文 ,
  • 丁自然 ,
  • 董凯 ,
  • 崔亚奇 ,
  • 张财生 ,
  • 王学谦 ,
  • 李徵 ,
  • 郭晨
展开
  • 1. 海军航空大学
    2. 清华大学
    3. 海军航空工程学院
    4. 海军航空大学 信息融合研究所
    5. 清华大学电子工程系
    6. 清华大学深圳国际研究生院

收稿日期: 2024-12-17

  修回日期: 2025-02-10

  网络出版日期: 2025-02-10

基金资助

国家自然科学基金基础科学中心;国家自然科学基金杰出青年基金;国家自然科学基金重大项目;国家自然科学基金青年基金;山东省高等学校青创科技计划创新团队

Development and Prospects of Multisource Information Fusion

  • HE You ,
  • LIU Yu ,
  • LI Yao-Wen ,
  • DING Zi-Ran ,
  • DONG Kai ,
  • CUI Ya-Qi ,
  • ZHANG Cai-Sheng ,
  • WANG Xue-Qian ,
  • LI Zheng ,
  • GUO Chen
Expand

Received date: 2024-12-17

  Revised date: 2025-02-10

  Online published: 2025-02-10

摘要

多源信息融合经历了数十年发展,从经典的信号处理问题拓展到多学科交叉前沿领域,覆盖了航空航天、智能交通、工业工程、国防安全等广泛军民应用。本文从多源信息融合的原理和意义出发,综述了信息融合技术的主要发展阶段,梳理归纳了融合检测、融合识别、融合估计、融合关联四个基本科学问题的研究进展,并概括了多源图像融合技术和面向信息融合的机器学习方法。在此基础上,介绍了信息融合在军事和民事领域的典型应用。最后,展望了信息融合技术与应用的发展方向。

本文引用格式

何友 , 刘瑜 , 李耀文 , 丁自然 , 董凯 , 崔亚奇 , 张财生 , 王学谦 , 李徵 , 郭晨 . 多源信息融合发展及展望[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31672

Abstract

Multisource information fusion has undergone decades of development, expanding from classic signal processing issues to a multidisciplinary frontier field and covering a wide range of military and civilian applications such as aerospace, intelligent transportation, industrial engineering, national defense and security. This paper starts from the definition and principles of multi-source information fusion, reviews the main development stages of information fusion technology, and summarizes the research progress of four basic scientific issues: fusion detection, fusion recognition, fusion estimation, and fusion association. It also outlines the technology of multisource image fusion and machine learning methods oriented towards information fusion. Based on that, this paper introduces the typical applications of information fusion in several military and civilian fields. Finally, the development direction of information fusion technology and its applications is prospected.

参考文献

[1] GAO H, CHENG B, WANG J, et al. Object classification using CNN-based fusion of vision and LIDAR in au-tonomous vehicle environment[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4224-4231.
[2] YEONG D J, VELASCO-HERNANDEZ G, BARRY J, et al. Sensor and sensor fusion technology in autonomous vehicles: A review[J]. Sensors, 2021, 21(6): 2140.
[3] WANG Q, TIAN X, LI D. Multimodal soft jumping robot with self-decision ability[J]. Smart Materials and Struc-tures, 2021, 30(8): 085038.
[4] HRAMOV A E, MAKSIMENKO V A, PISARCHIK A N. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and con-trol of human brain states[J]. Physics Reports, 2021, 918: 1-133.
[5] NASEER N, HONG K S. fNIRS-based brain-computer interfaces: A review[J]. Frontiers in human neurosci-ence, 2015, 9: Article 3.
[6] ABIRI R, BORHANI S, SELLERS E W, et al. A compre-hensive review of EEG-based brain-computer interface paradigms[J]. Journal of neural engineering, 2019, 16(1): 011001.
[7] 朱军. 会思考的硬核“椰城”:城市大脑塑造未来科幻城市[J].互联网经济, 2020(Z2): 68-71.
ZHU J. The thinking hardcore “Coconut City”: Urban brain shapes future sci fi cities[J]. Internet economy, 2020(Z2): 68-71 (in Chinese).
[8] 周光霞. 美军联合信息环境建设情况分析及启示[J]. 指挥与控制学报, 2016, 2(4): 354-360.
ZHOU G X. Analysis and insights on the construction of joint information environment in the US military[J]. Journal of Command and Control, 2016, 2(4): 354-360 (in Chinese).
[9] OpenAI. Video generation models as world simulators [EB/OL]. https://openai.com/research/video-generation-models-as-world-simulators. (2024-02-16).
[10] 何友, 王国宏, 陆大?, 等. 多传感器信息融合及应用[M]. 北京: 电子工业出版社, 2000.
HE Y, WANG G H, LU D J, et al. Multisensor Infor-mation Fusion With Applications[M]. Beijing: Publish-ing House of Electronics Industry, 2000 (in Chinese).
[11] CIUONZO D, ROSSI P S, VARSHNEY P K. Distributed detection in wireless sensor networks under multiplica-tive fading via generalized score tests[J]. IEEE Internet of Things Journal, 2021, 8(11): 9059-9071.
[12] LI C, LI G, VARSHNEY P K. Distributed detection of sparse signals with censoring sensors in clustered sen-sor networks[J]. Information Fusion, 2022, 83: 1-18.
[13] WANG X, LI G, QUAN C, et al. Distributed detection of sparse stochastic signals with quantized measurements: The generalized Gaussian case[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4886-4898.
[14] VARSHNEY P K. Distributed detection and data fu-sion[M]. Springer Science and Business Media, 2012.
[15] LI C, LI G, VARSHNEY P K. Distributed detection of sparse signals with censoring sensors in clustered sen-sor networks[J]. Information Fusion, 2022, 83: 1-18.
[16] ANDREA A, BARNI M, KALLAS K, et al. Information Fusion in Distributed Sensor Networks With Byzan-tines[M]. Springer, 2021.
[17] KAYAALP M, BORDIGNON V, SAYED A H. Social opinion formation and decision making under commu-nication trends[J]. IEEE Transactions on Signal Pro-cessing, 2024, 72: 506-520.
[18] VLASKI S, KAR S, SAYED A H, et al. Networked sig-nal and information processing: Learning by multiagent systems[J]. IEEE Signal Processing Magazine, 2023, 40(5): 92-105.
[19] QUAN C, SRIRANGA N, YANG H, et al. Efficient or-dered-transmission based distributed detection under data falsification attacks[J]. IEEE Signal Processing Letters, 2023, 30: 145-149.
[20] TORRA V, NARUKAWA Y. Modeling Decisions: Infor-mation Fusion and Aggregation Operators[M]. Springer Science and Business Media, 2007.
[21] HALL D, CHONG C-Y, LLINAS J, et al. Distribut-ed Data Fusion for Network-Centric Operations[M]. Boca Raton, FL: CRC Press, 2013.
[22] QIN Z, ZHAO P, ZHUANG T, et al. A survey of identity recognition via data fusion and feature learning[J]. In-formation Fusion, 2023, 91: 694-712.
[23] 徐从富, 耿卫东, 潘云鹤. 面向数据融合的DS方法综述[J]. 电子学报, 2001(03): 393-396.
XU C F, GENG W D, PAN Y H. A review of DS meth-ods for data fusion [J]. Acta Electronica Sinica, 2001(03): 393-396 (In Chinese).
[24] ZAHO J, DENG Y. Complex network modeling of evi-dence theory [J]. IEEE Transactions on Fuzzy Systems, 2020, 29(11): 3470-3480.
[25] LIU Z, DEZERT J, MERCIER G, et al. Dynamic evi-dential reasoning for change detection in remote sens-ing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1955-1967.
[26] DONG Y, LI X, DEZERT J, et al. Dezert-Smarandache theory-based fusion for human activity recognition in body sensor networks[J]. IEEE Transactions on Indus-trial Informatics, 2020, 16(11): 7138-7149.
[27] 韩崇昭, 朱洪艳, 段战胜. 多源信息融合(第3版)[M]. 北京: 清华大学出版社, 2022.
HAN C Z, ZHU H Y, DUAN Z S. Multisource Infor-mation Fusion (3rd Edition) [M]. Beijing: Tsinghua University Press, 2022 (in Chinese).
[28] Zhu Y, You Z, Zhao J, Zhang K, Li X R. The optimality for the distributed Kalman filtering fusion with feed-back[J]. Automatica, 2001, 37(9): 1489-1493.
[29] JULIER S J, UHLMANN J K. A non-divergent estima-tion algorithm in the presence of unknown correla-tions[C]. In Proceedings of the 1997 American Control Conference, 1997: 2369-2373.
[30] FARRELL W J, GANESH C. Generalized Chernoff fusion approximation for practical distributed data fu-sion[C]. In Proceedings of 2009 12th International Con-ference on Information Fusion, 2009: 555-562.
[31] REINHARDT M, NOACK B, ARAMBEL P O, et al. Minimum covariance bounds for the fusion under un-known correlations[J]. IEEE Signal Processing Letters, 2015, 22(9): 1210-1214.
[32] SIJS J, LAZAR M. State fusion with unknown correla-tion: Ellipsoidal intersection[J]. Automatica, 2012, 48(8): 1874-1878.
[33] NOACK B, SIJS J, REINHARDT M, et al. Decentral-ized data fusion with inverse covariance intersection[J]. Automatica, 2017, 79: 35-41.
[34] REECE S, ROBERTS S. Generalised covariance union: A unified approach to hypothesis merging in tracking[J]. IEEE Transactions on Aerospace and Electronic Sys-tems, 2010, 46(1): 207-221.
[35] SHAFIEEZADEHABADEH S, NGUYEN V A, KUHN D, et al. Wasserstein distributionally robust Kalman filtering[J]. Advances in Neural Information Processing Systems, 2018, 31: 1-10.
[36] WANG S, WU Z, LIM A. Robust state estimation for linear systems under distributional Uncertainty[J]. IEEE Transactions on Signal Processing, 2021, 69: 5963-5978.
[37] ZORZI M. Distributed Kalman Filtering Under Model Uncertainty[J]. IEEE Transactions on Control of Net-work Systems, 2020, 7(2): 990-1001.
[38] YU X, LI J. Distributed robust Kalman filters under model uncertainty and multiplicative disturbance[J]. IEEE Transactions on Aerospace and Electronic Sys-tems, 2023, 59(2): 973-988.
[39] NIU D, SONG E, LI Z, et al. A marginal distributionally robust MMSE estimation for a multisensor system with Kullback-Leibler divergence constraints[J]. IEEE Transactions on Signal Processing, 2023, 71: 3772-3787.
[40] AL HAGE J, E. EL NAJJAR M, POMORSKI D. Multi-sensor fusion approach with fault detection and exclu-sion based on the Kullback–Leibler divergence: Appli-cation on collaborative multi-robot system[J]. Infor-mation Fusion, 2017, 37: 61-76.
[41] BAR-SHALOM Y. Update with out-of-sequence meas-urements in tracking: Exact solution[J]. IEEE Transac-tions on Aerospace and Electronic Systems, 2002, 38(3): 769-777.
[42] BAR-SHALOM Y, HUMIN C, MALICK M. One-step solution for the multistep out-of-sequence-measurement problem in tracking[J]. IEEE Transac-tions on Aerospace and Electronic Systems, 2004, 40(1): 27-37.
[43] GOVAERS F, KOCH W. Generalized solution to smoothing and out-of-sequence processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1739-1748.
[44] KIM Y, HONG K, BANG H. Utilizing out-of-sequence measurement for ambiguous update in particle filter-ing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 493-501.
[45] ZHANG S, BAR-SHOM Y. Optimal update with multi-ple out-of-sequence measurements with arbitrary arriv-ing order[J]. IEEE Transactions on Aerospace and Elec-tronic Systems, 2012, 48(4): 3116-3132.
[46] GARCIA-FERNANDEZ A F, YI W. Continuous-discrete multiple target tracking with out-of-sequence meas-urements[J]. IEEE Transactions on Signal Processing, 2021, 69: 4699-4709.
[47] MARELLI D, SUI T, FU M. Distributed Kalman estima-tion with decoupled local filters[J]. Automatica, 2021, 130: 109724.
[48] BATTISTELLI G, CHISCI L. Kullback–Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability[J]. Automatica, 2014, 50(3): 707-718.
[49] BATTISTELLI G, CHISCI L, MUGNAI G, et al. Con-sensus-based linear and nonlinear filtering[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1410-1415.
[50] 金浩. 多传感器网络化系统的分布式估计算法研究[D]. 黑龙江大学, 2022.
JIN H. Research on distributed estimation algorithms for multi-sensor networked systems [D]. Heilongjiang University, 2022 (in Chinese).
[51] LI Y, QUEVEDO D E, LAU V, et al. Optimal periodic transmission power schedules for remote estimation of ARMA processes[J]. IEEE Transactions on Signal Pro-cessing, 2013, 61(24): 6164-6174.
[52] DEKKERS G, ROSAS F, VAN WATERSCHOOT T, et al. Dynamic sensor activation and decision-level fusion in wireless acoustic sensor networks for classification of domestic activities[J]. Information Fusion, 2022, 77: 196-210.
[53] ZHOU J, GU G, CHEN X. Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops[J]. IEEE Transactions on Automatic Con-trol, 2019, 64(4): 1603-1610.
[54] YANG H, LI H, XIA Y, et al. Distributed Kalman filter-ing over sensor networks with transmission delays[J]. IEEE Transactions on Cybernetics, 2021, 51(11): 5511-5521.
[55] LIU H, NIU B, LI Y. False-data-injection attacks on remote distributed consensus estimation[J]. IEEE Transactions on Cybernetics, 2022, 52(1): 433-443.
[56] YANG W, ZHANG Y, CHEN G, et al. Distributed filter-ing under false data injection attacks[J]. Automatica, 2019, 102: 34-44.
[57] LI L, YANG H, XIA Y, et al. Event-based distributed state estimation for linear systems under unknown input and false data injection attack[J]. Signal Processing, 2020, 170: 107423.
[58] LYNEN S, ACHTELIK M W, WEISS S, et al. A robust and modular multi-sensor fusion approach applied to MAV navigation[C]. In Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-tems, 2013: 3923-3929.
[59] TANG X, ZHANG Z, QIN Y. On-road object detection and tracking based on radar and vision fusion: A re-view[J]. IEEE Intelligent Transportation Systems Mag-azine, 2022, 14(5): 103-128.
[60] MAHFOUZ S, MOURAD-CHEHADE F, et al. Target tracking using machine learning and Kalman filter in wireless sensor networks[J]. IEEE Sensors Journal, 2014, 14(10): 3715-3725.
[61] ZHANG Y, SONG B, DU X, et al. Vehicle Tracking Using surveillance with multimodal data fusion[J]. IEEE Transactions on Intelligent Transportation Sys-tems, 2018, 19(7): 2353-2361.
[62] CAO J, ZHANG H, JIN L, et al. A review of object tracking methods: From general field to autonomous vehicles[J]. Neurocomputing, 2024, 585: 127635.
[63] YEOM S-W, KIRUBARAJAN T, BAR-SHALOM Y. Track segment association, fine-step IMM and initiali-zation with Doppler for improved track performance[J]. IEEE Transactions on aerospace and electronic systems, 2004, 40(1): 293-309.
[64] 杜渐, 夏学知. 面向航迹中断的模糊航迹关联算法[J].火力与指挥控制, 2013, 38(6):68-7176.
DU J, XIA X Z, A fuzzy track association algorithm in track interrupt-oriented[J]. Fire Control and Command Control,2013,38(6):68-7176 (in Chinese).
[65] 何友, 彭应宁, 陆大?, 等. 分布式多传感器数据融合中的双门限航迹相关算法[J]. 电子与信息学报, 1997, 19(6): 721-728.
HE Y, PENG Y, LU D, et al. Binary track correlation algorithms in a distributed multi-sensor data fusion sys-tem [J]. Journal of Electronics and Information Tech-nology, 1997, 19(6): 721-728 (in Chinese).
[66] 何友, 彭应宁. 基于模糊综合函数的航迹关联算法[J]. 电子与信息学报, 1999, 021(001): 91-96.
HE Y, PENG Y N. Track association algorithm based on fuzzy comprehensive function [J]. Journal of Electron-ics and Information Technology, 1999, 021(001): 91-96 (in Chinese).
[67] 徐毓, 金以慧. 基于多尺度小波变换和短时分形理论的航迹关联方法[J]. 控制与决策, 2003, 18(4): 5.
XU Y, JIN Y H. Track association method based on multi-scale wavelet transform and short-time fractal theory [J]. Control and Decision, 2003, 18(4): 5 (in Chinese).
[68] TIAN W, WANG Y, SHAN X, et al. Track-to-track asso-ciation for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters,2014, 21 (4): 449-453.
[69] 何友, 宋强, 熊伟. 基于相位相关的航迹对准关联技术[J]. 电子学报, 2010, 38(12): 6.
HE Y, SONG Q, XIONG W. A track correlation algo-rithm based on new space-time cross-point feature [J]. Acta Electronica Sinica, 2010, 38(12): 6 (in Chinese).
[70] XIONG W, XU P, CUI Y, et al. Track segment associa-tion with dual contrast neural network[J]. IEEE Trans-actions on Aerospace and Electronic Systems, 2021, 58(1): 247-261.
[71] XIONG W, XU P L, CUI Y Q. HTG-TA: Heterogenous track graph for asynchronous track-to-track associa-tion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 7232-7250.
[72] JIN B, TANG Y, ZHANG Z, et al. Radar and AIS track association integrated track and scene features through deep learning[J]. IEEE Sensors Journal, 2023, 23(7): 8001-8009.
[73] APTOULA E. Remote sensing image retrieval with global morphological texture descriptors[J/OL]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 3023-3034.
[74] XIE J, FANG Y, ZHU F, et al. Deepshape: Deep learned shape descriptor for 3D shape matching and retriev-al[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 1335-1345,
[75] LI P, REN P, ZHANG X, et al. Region-wise deep feature representation for remote sensing images[J]. Remote Sensing, 2018, 10(6): 871.
[76] XIONG W, XIONG Z, CUI Y, et al. A discriminative distillation network for cross-source remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 99: 1234-1247.
[77] CHEN H, DING G, LIU X, et al. IMRAM: Iterative matching with recurrent attention memory for cross-modal image-Text Retrieval[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:12652-12660.
[78] CHI P, FENG Y, ZHOU M, et al. TIAR: Text-Image-Audio Retrieval with weighted multimodal re-ranking[J]. Applied Intelligence, 2023, 53(19): 22898-22916.
[79] ARAUJO A, GIROD B. Large-scale video retrieval using image queries[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(6): 1406-1420
[80] HOTELLING H. Relations between two sets of vari-ates[M]. Breakthroughs in Statistics: Methodology and Distribution. New York, NY: Springer New York, 1992.
[81] LV Y, XIONG W, ZHANG X, et al. Fusion-based correlation learning model for cross-modal remote sensing image retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19(1): 1-5.
[82] 李浩然, 熊伟, 崔亚奇, 等. 相似度矩阵辅助遥感图像无监督哈希跨模态关联 [J]. 光子学报, 2023, 52(01): 216-227.
Li H R, XIONG W, CUI Y Q, et al. Enhancing remote sensing image unsupervised hashing cross-modal corre-lation with similarity matrix [J]. Acta Photonica Sinica, 2023, 52(01): 216-227 (in Chinese).
[83] FAN L, ZHANG F, FAN H, et al. Brief review of image denoising techniques[J]. Visual Computing for Industry, Biomedicine, and Art, 2019, 2(1): 7.
[84] HASKINS G, KRUGER U, YAN P. Deep learning in medical image registration: a survey[J]. Machine Vi-sion and Applications, 2020, 31(1): 1-18.
[85] LI G. Advanced Sparsity-Driven Models and Methods for Radar Applications[M]. SciTech/IET Publishing, 2020.
[86] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[87] GKILLAS A, AMPELIOTIS D, BERBERIDIS K. Con-nections between deep equilibrium and sparse represen-tation models with application to hyperspectral image denoising[J]. IEEE Transactions on Image Processing, 2023, 32: 1513-1528.
[88] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[89] SCETBON M, ELAD M, MILANFAR P. Deep K-SVD Denoising[J]. IEEE Transactions on Image Pro-cessing, 2021, 30: 5944-5955.
[90] LI H, WU X. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623.
[91] ZHAO F, ZHAO W, YAO L, et al. Self-supervised fea-ture adaption for infrared and visible image fusion[J]. Information Fusion, 2021, 76: 189-203.
[92] LIU J, WU Y, HUANG Z, et al. SMoA: Searching a modality-oriented architecture for infrared and visible image fusion[J]. IEEE Signal Processing Letters, 2021, 28: 1818-1822.
[93] XU H, WANG X, MA J. DRF: Disentangled representa-tion for visible and infrared image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
[94] TANG L, YUAN J, MA J. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time in-frared and visible image fusion network[J]. Information Fusion, 2022, 82: 28-42.
[95] MA J, YU W, LIANG P, et al. FusionGAN: A generative adversarial network for infrared and visible image fu-sion[J]. Information Fusion, 2019, 48: 11-26.
[96] LI J, HUO H, LIU K, et al. Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance[J]. Information Sciences, 2020, 529: 28-41.
[97] GU Y, WANG X, ZHANG C, et al. Advanced driving assistance based on the fusion of infrared and visible images[J]. Entropy, 2021, 23(2): 239.
[98] WANG X, ZHU D, LI G, et al. Proposal-Copula-based fusion of spaceborne and airborne SAR images for ship target detection[J]. Information Fusion, 2022, 77: 247-260.
[99] LI W, WANG X, LI G, et al. NN-Copula-CD: A copula-guided interpretable neural network for change detec-tion in heterogeneous remote sensing images[J/OL]. arXiv preprint, 2023, arXiv:2303.17448[2023-03-30].
[100] FANG Q, WANG Z. Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery[J]. Pattern Recognition, 2022, 130: 108786.
[101] WANG Q, CHI Y, SHEN T, et al. Improving RGB-infrared object detection by reducing cross-modality redundancy[J]. Remote Sensing, 2022, 14(9): 2020.
[102] JIANG X, LI G, LIU Y, et al. Change detection in het-erogeneous optical and SAR remote sensing images via deep homogeneous feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1551-1566.
[103] MATASCI G, PLANTE J, KASA K, et al. Deep learn-ing for vessel detection and identification from space-borne optical imagery[J]. ISPRS Annals of the Photo-grammetry, Remote Sensing and Spatial Information Sciences, 2021, 3: 303-310.
[104] ZHANG L, LIU Y, WANG X, et al. GLRT-based met-ric learning for remote sensing object retrieval[J/OL]. arXiv preprint, 2024, arXiv:2410.05773[2024-10-20].
[105] XIAO G, BAVIRISETTI D P, LIU G, et al. Image Fu-sion[M]. Singapore: Springer, 2020.
[106] LIU C, YANG H, FU J, et al. Learning trajectory-aware transformer for video super-resolution[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5687-5699.
[107] GAONKAR A, CHUKKAPALLI Y, RAMAN P J, et al. A comprehensive survey on multimodal data represen-tation and information fusion algorithms[C]. 2021 In-ternational Conference on Intelligent Technologies, 2021: 1-8.
[108] KLUPACS J, GOSTAR A K, RATHNAYAKE T, et al. Multiagent information fusion for connected driving: A review[J]. IEEE Access, 2022, 10: 85030-85049.
[109] LIN S, HAN Z, LI D, et al. Integrating model-and data-driven methods for synchronous adaptive multi-band image fusion[J]. Information Fusion, 2020, 54: 145-160.
[110] WEN J, JIANG D, TU G, et al. Dynamic interactive multiview memory network for emotion recognition in conversation[J]. Information Fusion, 2023, 91: 123-133.
[111] XU J , REN Y , SHI X ,et al. UNTIE: Clustering analy-sis with disentanglement in multi-view information fu-sion[J]. Information Fusion, 2023, 100:101937.
[112] NIE, FEIPING, et al. An effective and efficient algo-rithm for K-means clustering with new formulation[J]. IEEE Transactions on Knowledge and Data Engineer-ing, 2022 35(4) : 3433-3443.
[113] LIU T , ZHOU Z , YANG L .Layered isolation forest: A multi-level subspace algorithm for improving isolation forest[J].Neurocomputing, 2024, 581:127525.
[114] DU J , HAN G , LIN C ,et al. ITrust: An anomaly-resilient trust model based on isolation forest for un-derwater acoustic sensor networks[J]. IEEE Transac-tions on Mobile Computing, 2020, 21(5): 1684-1696.
[115] ZHANG, PEI, et al. Real-time malicious traffic detec-tion with online isolation forest over SD-WAN[J]. IEEE Transactions on Information Forensics and Security 18: 2076-2090.
[116] YANG C, LIU T, CHEN G, et al. ICSFF: Information constraint on self-supervised feature fusion for few-shot remote sensing image classification[J]. IEEE Transac-tions on Geoscience and Remote Sensing, 2024, 62: 1-12.
[117] ZHANG Y, LI W, ZHANG M, et al. Graph information aggregation cross-domain few-shot learning for hyper-spectral image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(2): 1912-1925.
[118] WU L, LI Z, ZHAO H, et al. Recognizing unseen ob-jects via multimodal intensive knowledge graph propa-gation[C]. Proceedings of the 29th ACM SIGKDD Con-ference on Knowledge Discovery and Data Mining. 2023: 2618-2628.
[119] JIANG X , LI G , ZHANG X P ,et al. A semi-supervised Siamese network for efficient change detec-tion in heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-18.
[120] CHUN, DAYOUNG, SEUNGIL L, et al. USD: Uncer-tainty-based one-phase learning to enhance pseudo-label reliability for semi-supervised object detection[J]. IEEE Transactions on Multimedia, 2024, 26: 6336-6347.
[121] ZHOU Z, ZHAO L, JI K, et al. A domain adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-18.
[122] HU, HE-XUAN, et al. Multi-source information fusion based DLaaS for traffic flow prediction[J]. IEEE Transactions on Computers, 2024, 73(4): 994-1003.
[123] GUO Y, LIU R W, QU J, et al. Asynchronous trajectory matching-based multimodal maritime data fusion for vessel traffic surveillance in inland waterways[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12779-12792.
[124] LIU Y, LIU J, YANG K, et al. Amp-net: Appearance-motion prototype network assisted automatic video anomaly detection system[J]. IEEE Transactions on In-dustrial Informatics, 2023, 20(2): 1-13.
[125] 李伯虎. 云制造系统3.0: 一种适应新时代、新态势、新征程的先进智能制造系统[J].电气时代, 2022, (1): 18-19.
LI B H. Cloud manufacturing system3.0: An advanced intelligent manufacturing system adapted to the new era, New Situation, and New Journey[J]. Electrical Age, 2022, (1): 18-19 (in Chinese).
[126] MINNETT P J, ALVERA-AZCARATE A, CHIN T M, et al. Half a century of satellite remote sensing of sea-surface temperature[J]. Remote sensing of Environment, 2019, 233(11): 66.
[127] YANG G, YE Q, XIA J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond[J]. Information Fusion, 2022, 77: 29-52.
[128] UDDIN M Z, HASSAN M M, ALSANAD A, et al. A body sensor data fusion and deep recurrent neural net-work-based behavior recognition approach for robust healthcare[J]. Information Fusion, 2020, 55: 105-115.
[129] ZHANG Y D, DONG Z, WANG S H, et al. Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation[J]. Information Fu-sion, 2020, 64: 149-187.
[130] JI B, ZHANG X, MUMTAZ S, et al. Survey on the internet of vehicles: Network architectures and applica-tions[J]. IEEE Communications Standards Magazine, 2020, 4(1): 34-41.
[131] 汲克山, 刘思培, 李清玉, 等.大模型在军事领域的应用与展望[C]. 第十二届中国指挥控制大会, 2024: 79-83.
JI K S, LIU S P, LI Q Y, et al. The Application and Pro-spect of Large Models in the Military Field[C]. The 12th China Command and Control Conference, 2024: 79-83 (in Chinese).
文章导航

/