飞行器设计生成式模型专栏

飞行器生成式模型气动设计研究进展与展望

  • 林杰 ,
  • 唐志共 ,
  • 钱炜祺 ,
  • 王岳青 ,
  • 张鹏 ,
  • 徐炜遐 ,
  • 刘杰
展开
  • 1.国防科技大学 计算机学院,长沙 410073
    2.空天飞行空气动力科学与技术全国重点实验室,绵阳 621000
    3.中国空气动力研究与发展中心,绵阳 621000
    4.国防科技大学 高端装备数字化软件重点实验室,长沙 410073
    5.国防科技大学 并行与分布处理重点实验室,长沙 410073
.E-mail: tangzhigong@126.com

收稿日期: 2024-12-18

  修回日期: 2025-01-13

  录用日期: 2025-01-17

  网络出版日期: 2025-02-06

基金资助

国家重点研发计划(2023YFA1011704);国家自然科学基金(12472300)

Research progress and prospects of aircraft aerodynamic design based on generative models

  • Jie LIN ,
  • Zhigong TANG ,
  • Weiqi QIAN ,
  • Yueqing WANG ,
  • Peng ZHANG ,
  • Weixia XU ,
  • Jie LIU
Expand
  • 1.College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China
    2.State Key Laboratory of Aerodynamics,Mianyang 621000,China
    3.China Aerodynamics Research and Development Center,Mianyang 621000,China
    4.Laboratory of Digitizing Software for Frontier Equipment,National University of Defense Technology,Changsha 410073,China
    5.Science and Technology on Parallel and Distributed Processing Laboratory,National University of Defense Technology,Changsha 410073,China

Received date: 2024-12-18

  Revised date: 2025-01-13

  Accepted date: 2025-01-17

  Online published: 2025-02-06

Supported by

National Key Research and Development Program of China(2023YFA1011704);National Natural Science Foundation of China(12472300)

摘要

生成式模型技术作为深度学习领域发展最为迅速的方向之一,在计算机视觉等领域取得巨大成功,也为空气动力学等科学领域研究提供了新的模式和方法。聚焦生成式模型在飞行器气动设计领域研究进展,系统总结近年来相关研究成果。首先,建立了包含“表示—生成—评估”3个环节的飞行器生成式气动设计框架;其次,针对气动布局表征、生成式气动布局生成和设计质量评估等环节技术发展现状和涉及的关键技术问题分别进行梳理和深入讨论;然后,简要介绍了气动数据构造方法和典型气动数据集,为开展生成式气动设计提供数据支撑;最后,结合气动设计需求和大模型技术在气动设计领域研究趋势,对发展融合型生成式模型架构、构建气动设计大模型和领域智能体、建立生成式气动设计质量综合评估体系、生成式气动设计模型领域知识融入等未来重点发展方向进行展望。

本文引用格式

林杰 , 唐志共 , 钱炜祺 , 王岳青 , 张鹏 , 徐炜遐 , 刘杰 . 飞行器生成式模型气动设计研究进展与展望[J]. 航空学报, 2025 , 46(10) : 631679 -631679 . DOI: 10.7527/S1000-6893.2025.31679

Abstract

As one of the fastest-growing directions in deep learning, the generative model has achieved remarkable success in realms such as computer vision and has also introduced novel paradigms and methodologies for research endeavors within the scientific fields like aerodynamics. This paper focuses on the latest research advancements of generative models in the field of aircraft aerodynamic configuration design, and systematically summarizes the relevant research achievements in recent years. Firstly, a representation-generation-evaluation framework for generative aerodynamic configuration design of aircraft is established. Subsequently, the key technologies and current development progress involved in aerodynamic configuration design are examined and discussed from the perspectives of aerodynamic configuration representation, the development of generative aerodynamic configuration design models, and methods for evaluating design quality. Additionally, a brief overview of aerodynamic data construction methods and typical datasets is provided, serving as a data foundation for generative aerodynamic design. Lastly, the future key development directions in the field of generative aerodynamic configuration design are discussed, including exploration of hybrid generative model architectures, construction of large models and domain-specific agents for aerodynamic design, establishment of a comprehensive evaluation system for generative aerodynamic design quality, and integration of domain knowledge into generative aerodynamic design models.

参考文献

1 陈小前, 姚雯, 赵勇, 等. 飞行器多学科设计优化理论与应用研究[M]. 2版. 北京: 国防工业出版社, 2023: 3-4.
  CHEN X Q, YAO W, ZHAO Y. Multidisciplinary design optimization of flight vehicles theory and applications[M]. 2nd ed. Beijing: National Defense Industry Press, 2023: 3-4 (in Chinese).
2 PETER J E V, DWIGHT R P. Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches?[J]. Computers & Fluids201039(3): 373-391.
3 LUO J Q, XIONG J T, LIU F. Aerodynamic design optimization by using a continuous adjoint method[J]. Science China Physics, Mechanics & Astronomy, 201457(7): 1363-1375.
4 黎明, 陈娇娇, 周海, 等. 基于伴随方法的无人机气动隐身优化设计[J]. 航空学报202445(17): 530010.
  LI M, CHEN J J, ZHOU H, et al. Adjoint-based aero/stealth optimization design for UAV[J]. Acta Aeronautica et Astronautica Sinica202445(17): 530010 (in Chinese).
5 赵轲, 邓俊, 黄江涛, 等. 飞翼布局高低速一体化气动优化设计[J]. 航空学报202445(15): 129367.
  ZHAO K, DENG J, HUANG J T, et al. Aerodynamic optimization design of high and low speed integration for flying wing layout[J]. Acta Aeronautica et Astronautica Sinica202445(15): 129367 (in Chinese).
6 陈树生, 冯聪, 张兆康, 等. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报202445(6): 629596.
  CHEN S S, FENG C, ZHANG Z K, et al. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method[J]. Acta Aeronautica et Astronautica Sinica202445(6): 629596 (in Chinese).
7 WANG K, YU S J, LIU T G, et al. Airfoil optimization based on isogeometric discontinuous Galerkin[C]?∥Proceedings of the 2nd International Conference on Algorithms, Computing and Systems. New York: ACM, 2018: 227-231.
8 SCHRAMM M, STOEVESANDT B, PEINKE J. Optimization of airfoils using the adjoint approach and the influence of adjoint turbulent viscosity[J]. Computation20186(1): 5.
9 解静, 白鹏, 李永远. 基于遗传算法的升力体外形优化设计[J]. 气体物理20205(4): 31-36.
  XIE J, BAI P, LI Y Y. Configuration design of lifting body based on genetic algorithm[J]. Physics of Gases20205(4): 31-36 (in Chinese).
10 HAGHIGHAT S, MARTINS J R R A, LIU H H T. Aeroservoelastic design optimization of a flexible wing[J]. Journal of Aircraft201249(2): 432-443.
11 KENNEDY J, EBERHART R. Particle swarm optimization[C]?∥Proceedings of ICNN’95-International Conference on Neural Networks. Piscataway: IEEE Press, 2002: 1942-1948.
12 COLOMBO A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[C]?∥Proceedings of the First European Conference on Artificial Life, 1991.
13 常彦鑫, 高正红. 自适应差分进化算法在气动优化设计中的应用[J]. 航空学报200930(9): 1590-1596.
  CHANG Y X, GAO Z H. Application of adaptive differential evolutionary algorithms to aerodynamic optimization design[J]. Acta Aeronautica et Astronautica Sinica200930(9): 1590-1596 (in Chinese).
14 HOSDER S, WATSON L T, GROSSMAN B, et al. Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport[J]. Optimization and Engineering20012(4): 431-452.
15 FORRESTER A I J, SóBESTER A, KEANE A J. Engineering design via surrogate modelling: A practical guide[M]. Chichester: John Wiley & Sons, 2008: 49-63.
16 JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization200123(1): 1-13.
17 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报201940(1): 522480.
  CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522480 (in Chinese).
18 KINGMA D P, WELLING M. Auto-encoding variational Bayes [DB/OL]. arXiv preprint: 11312.6114, 2013.
19 GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [DB/OL]. arXiv preprint: 1406.2661, 2014.
20 DINH L, KRUEGER D, BENGIO Y. NICE: Non-linear independent components estimation?[DB/OL]. arXiv preprint: 1410.8516, 2014.
21 SOHL-DICKSTEIN J, WEISS E A, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]?∥Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37. New York: ACM, 2015: 2256-2265.
22 REGENWETTER L, NOBARI A H, AHMED F. Deep generative models in engineering design: A review[J]. Journal of Mechanical Design2022144(7): 071704.
23 WANG H C, FU T F, DU Y Q, et al. Scientific discovery in the age of artificial intelligence[J]. Nature2023620(7972): 47-60.
24 GONG S S, LI M K, FENG J T, et al. DiffuSeq: Sequence to sequence text generation with diffusion models [DB/OL]. arXiv preprint: 2210.08933, 2022.
25 VAHDAT A, WILLIAMS F, GOJCIC Z, et al. Lion: Latent point diffusion models for 3d shape generation[J]. Advances in Neural Information Processing Systems202235: 10021-10039.
26 MERCHANT A, BATZNER S, SCHOENHOLZ S S, et al. Scaling deep learning for materials discovery[J]. Nature2023624(7990): 80-85.
27 LIN X Y, XU C, XIONG Z P, et al. PanGu Drug Model: Learn a molecule like a human[J]. Science China Life Sciences202366(4): 879-882.
28 ASPERTI A, MERIZZI F, PAPARELLA A, et al. Precipitation nowcasting with generative diffusion models [DB/OL]. arXiv preprint: 2308.06733, 2023.
29 陈小前, 赵勇, 霍森林, 等. 多尺度结构拓扑优化设计方法综述[J]. 航空学报202344(15): 528863.
  CHEN X Q, ZHAO Y, HUO S L, et al. A review of topology optimization design methods for multi-scale structures[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528863 (in Chinese).
30 REGENWETTER L, SRIVASTAVA A, GUTFREUND D, et al. Beyond statistical similarity: Rethinking metrics for deep generative models in engineering design [DB/OL]. arXiv preprint: 2302.02913, 2023.
31 YANG Y Y, JIN M, WEN H M, et al. A survey on diffusion models for time series and spatio-temporal data [DB/OL]. arXiv preprint: 2404.18886, 2024.
32 BOND-TAYLOR S, LEACH A, LONG Y, et al. Deep generative modelling: A comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202244(11): 7327-7347.
33 唐志共, 朱林阳, 向星皓, 等. 智能空气动力学若干研究进展及展望[J]. 空气动力学学报202341(7): 1-35.
  TANG Z G, ZHU L Y, XIANG X H, et al. Some research progress and prospect of intelligent aerodynamics[J]. Acta Aerodynamica Sinica202341(7): 1-35 (in Chinese).
34 ZHAO Y X, ZHANG P, SUN G P, et al. CcDPM: A continuous conditional diffusion probabilistic model for inverse design[J]. Proceedings of the AAAI Conference on Artificial Intelligence202438(15): 17033-17041.
35 YILMAZ E, GERMAN B. Conditional generative adversarial network framework for airfoil inverse design: AIAA-2020-3185[R]. Reston: AIAA, 2020.
36 CHEN W, FUGE M. BézierGAN: Automatic generation of smooth curves from interpretable low-dimensional parameters[J]. Machine Learning2018107(8-10): 1549-1575.
37 YANG S, LEE S G, YEE K. Inverse design optimization framework via a two-step deep learning approach: Application to a wind turbine airfoil[J]. Engineering with Computers202339(3): 2239-2255.
38 CHEN Q, WANG J, POPE P, et al. Inverse design of two-dimensional airfoils using conditional generative models and surrogate log-likelihoods[J]. Journal of Mechanical Design2022144(2): 021712.
39 NOBARI A H, CHEN W W, AHMED F. RANGE-GAN: Design synthesis under constraints using conditional generative adversarial networks[J]. Journal of Mechanical Design2021143(12): 1-16.
40 SHU D L, CUNNINGHAM J D, STUMP G, et al. 3D design using generative adversarial networks and physics-based validation?[J]. Journal of Mechanical Design2023142: 071701.
41 SOBIECZKY H. Parametric airfoils and wings[M]?∥FUJII K, DULIKRAVICH G S. Recent development of aerodynamic design methodologies: Inverse design and optimization. Wiesbaden: Vieweg+Teubner Verlag, 1999: 71-87.
42 XIE H R, WANG J, ZHANG M. Parametric generative schemes with geometric constraints for encoding and synthesizing airfoils[J]. Engineering Applications of Artificial Intelligence2024128: 107505.
43 DU X S, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization?[C]?∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
44 HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft197815(7): 407-412.
45 KULFAN B, BUSSOLETTI J. Fundamental parametric geometry representations for aircraft component shapes?[C]?∥11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2006.
46 QIU Y S, BAI J Q, LIU N, et al. Global aerodynamic design optimization based on data dimensionality reduction[J]. Chinese Journal of Aeronautics201831(4): 643-659.
47 POOLE D J, ALLEN C B, RENDALL T. Efficient aero-structural wing optimization using compact aerofoil decomposition[C]?∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
48 CINQUEGRANA D, IULIANO E. Investigation of adaptive design variables bounds in dimensionality reduction for aerodynamic shape optimization[J]. Computers & Fluids2018174: 89-109.
49 WU P, YUAN W Y, JI L L, et al. Missile aerodynamic shape optimization design using deep neural networks[J]. Aerospace Science and Technology2022126: 107640.
50 NICHOL A, JUN H, DHARIWAL P, et al. Point-E: A system for generating 3D point clouds from complex prompts [DB/OL]. arXiv preprint: 2212.08751, 2022.
51 SIDDIQUI Y, ALLIEGRO A, ARTEMOV A, et al. Meshgpt: Generating triangle meshes with decoder-only transformers[C]?∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2024: 19615-19625.
52 WU Z, SONG S, KHOSLA A, et al. 3D shapenets: A deep representation for volumetric shapes[C]?∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1912-1920.
53 PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: Learning continuous signed distance functions for shape representation[C]?∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 165-174.
54 CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]?∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 5939-5948.
55 MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM202165(1): 99-106.
56 TRIESS L T, BüHLER A, PETER D, et al. Point cloud generation with continuous conditioning [DB/OL]. arXiv preprint: 2202.08526, 2022.
57 LIM H, KIM H. Multi-objective airfoil shape optimization using an adaptive hybrid evolutionary algorithm[J]. Aerospace Science and Technology201987: 141-153.
58 HE Y W, SUN J J, SONG P, et al. Preference-driven Kriging-based multiobjective optimization method with a novel multipoint infill criterion and application to airfoil shape design[J]. Aerospace Science and Technology202096: 105555.
59 LI Z Y, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations [DB/OL]. arXiv preprint2010.08895, 2020.
60 CHARLES R Q, HAO S, MO K C, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]?∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 77-85.
61 QI C R, YI L, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]?∥Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5105-5114.
62 GUO M H, CAI J X, LIU Z N, et al. PCT: Point cloud transformer[J]. Computational Visual Media20217(2): 187-199.
63 ACHLIOPTAS P, DIAMANTI O, MITLIAGKAS I, et al. Learning representations and generative models for 3D point clouds[C]?∥International Conference on Machine Learning (ICML), 2018.
64 DANESHMAND M, HELMI A, AVOTS E, et al. 3D scanning: A comprehensive survey [DB/OL]. arXiv preprint1801.08863, 2018.
65 唐志共, 钱炜祺, 何磊, 等. 空气动力学领域大模型研究思考与展望[J]. 空气动力学学报202442(12): 1-11.
  TANG Z G, QIAN W Q, HE L, et al. Thoughts and prospects on large model research in aerodynamics?[J]. Acta Aerodynamica Sinica202442(12): 1-11 (in Chinese).
66 SHEN Y, HUANG W, WANG Z G, et al. A deep learning framework for aerodynamic pressure prediction on general three-dimensional configurations[J]. Physics of Fluids202335(10): 107111.
67 BEN-HAMU H, MARON H, KEZURER I, et al. Multi-chart generative surface modeling[J]. ACM Transactions on Graphics201837(6): 1-15.
68 TAN Q Y, GAO L, LAI Y K, et al. Variational autoencoders for deforming 3D mesh models[C]?∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 5841-5850.
69 ZHANG Z Y, WANG Y X, JIMACK P K, et al. MeshingNet: A new mesh generation method based on deep learning[C]?∥International Conference on Computational Science, 2020: 186-198.
70 BROCK A, LIM T, RITCHIE J M, et al. Generative and discriminative voxel modeling with convolutional neural networks?[DB/OL]. arXiv preprint: 1608.04236, 2016.
71 LI Y Y, PIRK S, SU H, et al. FPNN: Field probing neural networks for 3D data[C]?∥Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 307-315.
72 ZHANG W T, YANG Z, JIANG H L, et al. 3D shape synthesis for conceptual design and optimization using variational autoencoders[C]?∥International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ACM, 2019.
73 MITTAL P, CHENG Y C, SINGH M, et al. AutoSDF: Shape priors for 3D completion, reconstruction and generation[C]?∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 306-315.
74 CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[C]?∥Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 2180-2188.
75 CHEN W, AHMED F. MO-PaDGAN: Reparameterizing engineering designs for augmented multi-objective optimization[J]. Applied Soft Computing2021113: 107909.
76 CHEN W, AHMED F. PaDGAN: Learning to generate high-quality novel designs[J]. Journal of Mechanical Design2021143(3): 031703.
77 KANG Y E, LEE D, YEE K. Physically interpretable airfoil parameterization using variational autoencoder-based generative modeling[C]?∥AIAA Scitech 2024 Forum. Reston: AIAA, 2024.
78 LI X Y, ZHANG Q, KANG D, et al. Advances in 3D generation: A survey [DB/OL]. arXiv preprint: 2401.17807, 2024.
79 SHEN T C, GAO J, YIN K X, et al. Deep marching tetrahedra: A hybrid representation for high-resolution 3D shape synthesis[J]. Advances in Neural Information Processing Systems202134: 6087-6101.
80 ALQAHTANI H, KAVAKLI-THORNE M, KUMAR G. Applications of generative adversarial networks (GANs): An updated review[J]. Archives of Computational Methods in Engineering202128(2): 525-552.
81 MIRZA M, OSINDERO S. Conditional generative adversarial nets?[DB/OL]. arXiv preprint: 1411.1784, 2014.
82 ARJOVSKY M, CHINTALA S, BOTTOU L, et al. Wasserstein generative adversarial networks[C]?∥Proceedings of the 34th International Conference on Machine Learning-Volume 70. New York: ACM, 2017: 214-223.
83 KINGMA D P, WELLING M. An introduction to variational autoencoders[J]. Foundations and Trends in Machine Learning201912(4): 307-392.
84 SOHN K, YAN X C, LEE H, et al. Learning structured output representation using deep conditional generative models[C]?∥Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2015: 3483-3491.
85 KOJIMA H, IKEGAMI T. Organization of a Latent Space structure in VAE/GAN trained by navigation data[J]. Neural Networks2022152: 234-243.
86 BAO J M, CHEN D, WEN F, et al. CVAE-GAN: Fine-grained image generation through asymmetric training[C]?∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2764-2773.
87 DINH L, SOHL-DICKSTEIN J, BENGIO S. Density estimation using real NVP[DB/OL]. arXiv preprint: 1605.08803, 2016.
88 KINGMA D P, DHARIWAL P, KINGMA D P, et al. Glow: Generative flow with invertible 1×1 convolutions[C]?∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 10236-10245.
89 YANG G D, HUANG X, HAO Z K, et al. PointFlow: 3D point cloud generation with continuous normalizing flows[C]?∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 4541-4550.
90 KIM H, LEE H, KANG W H, et al. SoftFlow: Probabilistic framework for normalizing flow on manifolds [DB/OL]. arXiv preprint2006.04604, 2020.
91 HO J, JAIN A, ABBEEL P, et al. Denoising diffusion probabilistic models[C]?∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 6840-6851.
92 SINHA A, SONG J M, MENG C L, et al. D2C: Diffusion-denoising models for few-shot conditional generation [DB/OL]. arXiv preprint: 2106.06819, 2021.
93 VAHDAT A, KREIS K, KAUTZ J, et al. Score-based generative modeling in latent space[C]?∥Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2021: 11287-11302.
94 SONG J, MENG C, ERMON S. Denoising diffusion implicit models[C]?∥International Conference on Learning Representations, 2020.
95 AHSAN M M, RAMAN S, LIU Y, et al. A comprehensive survey on diffusion models and their applications[DB/OL]. arXiv preprint: 2408.10207, 2024.
96 YANG L, ZHANG Z L, SONG Y, et al. Diffusion models: A comprehensive survey of methods and applications [DB/OL]. arXiv preprint: 2209.00796, 2022.
97 MUKHOPADHYAY S, GWILLIAM M, AGARWAL V, et al. Diffusion models beat GANs on image classification[J]. arXiv preprint: 2307.08702, 2023.
98 MAZé F, AHMED F, MAZé F, et al. Diffusion models beat GANs on topology optimization[C]?∥Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence. New York: ACM, 2023: 9108-9116.
99 ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. A brief survey of deep reinforcement learning [DB/OL]. arXiv preprint:1708.05866, 2017.
100 HAO J Y, YANG T P, TANG H Y, et al. Exploration in deep reinforcement learning: From single-agent to multiagent domain[J]. IEEE Transactions on Neural Networks and Learning Systems202435(7): 8762-8782.
101 DHARIWAL P, NICHOL A, DHARIWAL P, et al. Diffusion models beat GANs on image synthesis[C]?∥Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2021: 8780-8794.
102 CHENG Y C, LEE H Y, TULYAKOV S, et al. SDFusion: Multimodal 3D shape completion, reconstruction, and generation[C]?∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 4456-4465.
103 DU X S, HE P, MARTINS J R R A. Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling[J]. Aerospace Science and Technology2021113: 106701.
104 LEI R W, BAI J Q, WANG H, et al. Deep learning based multistage method for inverse design of supercritical airfoil[J]. Aerospace Science and Technology2021119: 107101.
105 CHEN W, CHIU K, FUGE M. Aerodynamic design optimization and shape exploration using generative adversarial networks[C]?∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
106 JIN S Y, CHEN S S, CHE S Q, et al. Airfoil aerodynamic/stealth design based on conditional generative adversarial networks[J]. Physics of Fluids202436(7): 077146.
107 YONEKURA K, SUZUKI K. Data-driven design exploration method using conditional variational autoencoder for airfoil design[J]. Structural and Multidisciplinary Optimization202164(2): 613-624.
108 MROSEK M, OTHMER C, RADESPIEL R. Variational autoencoders for model order reduction in vehicle aerodynamics[C]?∥AIAA Aviation 2021 Forum. Reston: AIAA, 2021.
109 YANG Y J, LI R Z, ZHANG Y F, et al. Flowfield prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal202260(10): 5805-5820.
110 LI J C, ZHANG M Q, MARTINS J R, et al. Efficient aerodynamic shape optimization with deep-learning-based geometric filtering[J]. AIAA Journal202058(10): 4243-4259.
111 YAMAKAWA S. YS flight simulator[EB/OL]. [2025-01-17]. .
112 YONEKURA K, WADA K, SUZUKI K. Generating various airfoils with required lift coefficients by combining NACA and Joukowski airfoils using conditional variational autoencoders[J]. Engineering Applications of Artificial Intelligence2022108: 104560.
113 WANG X, QIAN W Q, ZHAO T, et al. A generative design method of airfoil based on conditional variational autoencoder[J]. Engineering Applications of Artificial Intelligence2025139: 109461.
114 ZHANG Y F, YAN C Y, CHEN H X. An inverse design method for airfoils based on pressure gradient distribution[J]. Energies202013(13): 3400.
115 SONG C, LUO X, LIU H Y, et al. Inverse design method of pressure distribution using variational autoencoder[C]?∥2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings. Singapore: Springer Nature Singapore, 2024: 1595-1610.
116 WANG J, LI R Z, HE C, et al. An inverse design method for supercritical airfoil based on conditional generative models[J]. Chinese Journal of Aeronautics202235(3): 62-74.
117 LIU J, WU J Y, XIE H R, et al. AFBench: A large-scale benchmark for airfoil design [DB/OL]. arXiv preprint: 2406.18846, 2024.
118 陈树生, 贾苜梁, 林家豪, 等.? ?生成式模型赋能飞行器技术应用研究进展与展望[J].? 航空学报202546(11): 631194.
  CHEN S S, JIA M L, LIN J H, et al. Research progress and prospects of empowering intelligent aircraft technology applications with generative models[J]. Acta Aeronautica et Astronautica Sinica202546(11): 631194 (in Chinese).
119 陈树生, 贾苜梁, 刘衍旭, 等. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报202445(6): 629595.
  CHEN S S, JIA M L, LIU Y X, et al. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review[J]. Acta Aeronautica et Astronautica Sinica202445(6): 629595 (in Chinese).
120 VIQUERAT J, RABAULT J, KUHNLE A, et al. Direct shape optimization through deep reinforcement learning[J]. Journal of Computational Physics2021428: 110080.
121 DUSSAUGE T P, SUNG W J, PINON FISCHER O J, et al. A reinforcement learning approach to airfoil shape optimization[J]. Scientific Reports202313(1): 9753.
122 DING X, WANG Y W, XU Z H, et al. Continuous conditional generative adversarial networks: Novel empirical losses and label input mechanisms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202345(7): 8143-8158.
123 MOHRI M, ROSTAMIZADEH A, TALWALKAR A. Foundations of machine learning[M]. 2nd ed. Cambridge: MIT Press, 2018: 62-64.
124 DAVIS R A, LII K S, POLITIS D N. Remarks on some nonparametric estimates of a density function[M]?∥Selected Works of Murray Rosenblatt. New York: Springer New York, 2011: 95-100.
125 PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics196233(3): 1065-1076.
126 CHAPELLE O, WESTON J, BOTTOU L, et al. Vicinal risk minimization[C]?∥Annual Neural Information Processing Systems Conference, 2000: 416-422.
127 DONG Y, LI D W, ZHANG C, et al. Inverse design of two-dimensional graphene/h-BN hybrids by a regressional and conditional GAN[J]. Carbon2020169: 9-16.
128 NOBARI A H, CHEN W, AHMED F. PcDGAN: A continuous conditional diverse generative adversarial network for inverse design[C]?∥Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 606-616.
129 PEZESHKI M, KABA O, BENGIO Y, et al. Gradient starvation: A learning proclivity in neural networks[J]. Advances in Neural Information Processing Systems202134: 1256-1272.
130 PAPYAN V, HAN X Y, DONOHO D L. Prevalence of neural collapse during the terminal phase of deep learning training[J]. Proceedings of the National Academy of Sciences of the United States of America2020117(40): 24652-24663.
131 LI C Y, FARKHOOR H, LIU R, et al. Measuring the intrinsic dimension of objective landscapes [DB/OL]. arXiv preprint1804.08838, 2018.
132 HASNAT M A, BOHNé J, MILGRAM J, et al. Von Mises-Fisher mixture model-based deep learning: Application to face verification?[DB/OL]. arXiv preprint: 1706.04264, 2017.
133 DAVIDSON T R, FALORSI L, DE CAO N, et al. Hyperspherical variational auto-encoders?[DB/OL]. arXiv preprint1804.00891, 2018.
134 CHEN L M, ZHANG G X, ZHOU H N, et al. Fast greedy MAP inference for determinantal point process to improve recommendation diversity[C]?∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 5627-5638.
135 KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[C]?∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 4396-4405.
136 KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 8107-8116.
137 BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis [DB/OL]. arXiv preprint1809.11096, 2018.
138 DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding [DB/OL]. arXiv preprint1810.04805, 2018.
139 RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research202021(1): 5485-5551.
140 BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]?∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 1877-1901.
141 WANG Y Q, DENG L, WAN Y B, et al. An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks[J]. IEEE Transactions on Neural Networks and Learning Systems202334(7): 3538-3552.
142 HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6629-6640.
143 BANERJEE S, LAVIE A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments[C]?∥Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, 2005: 65-72.
144 LIN C Y. ROUGE: A package for automatic evaluation of summaries[C]∥Annual Meeting of the Association for Computational Linguistics, 2004: 74-81.
145 PAPINENI K, ROUKOS S, WARD T, et al. BLEU: A method for automatic evaluation of machine translation [C]?∥Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. New York: ACM, 2002: 311-318.
146 BI?KOWSKI M, SUTHERLAND D J, ARBEL M, et al. Demystifying MMD GANs [DB/OL]. arXiv preprint1801.01401, 2018.
147 SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 2234-2242.
148 SMOLA A J, GRETTON A, BORGWARDT K. Maximum mean discrepancy[C]?∥13th International Conference on Neural Information Processing, 2006: 3-6.
149 MROUEH Y, SERCU T. Fisher GAN[J]. Advances in Neural Information Processing Systems201730: 2510-2520.
150 SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, 2017: 3798-3804.
151 MROUEH Y, SERCU T, GOEL V. McGAN: Mean and covariance feature matching GAN[C]∥International Conference on Machine Learning, 2017: 2527-2535.
152 RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena199260(1-4): 259-268.
153 JOYCE J M. Kullback-Leibler divergence[M]∥Encyclopedia of Machine Learning. Berlin, Heidelberg: Springer, 2011: 720-722.
154 YUAN Z L, WANG Y X, QIU Y S, et al. Aerodynamic coefficient prediction of airfoils with convolutional neural network[C]?∥The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). Singapore: Springer Singapore, 2019: 34-46.
155 YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[C]∥18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017.
156 LEE D H, LEE D, LEE J, et al. Prediction of multiple aerodynamic coefficients of missiles using CNN[C]?∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
157 RITZ S G, HARTFIELD R J, DAHLEN J A, et al. Rapid calculation of missile aerodynamic coefficients using artificial neural networks[C]∥2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-19.
158 CHEN H, HE L, QIAN W Q, et al. Multiple aerodynamic coefficient prediction of airfoils using a convolutional neural network[J]. Symmetry202012(4): 544.
159 BHATNAGAR S, AFSHAR Y, PAN S W, et al. Prediction of aerodynamic flow fields using convolutional neural networks[J]. Computational Mechanics201964(2): 525-545.
160 HAN R K, WANG Y X, ZHANG Y, et al. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Physics of Fluids201931(12): 127101.
161 LEE S, YOU D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics2019879: 217-254.
162 MORTON J, WITHERDEN F D, JAMESON A, et al. Deep dynamical modeling and control of unsteady fluid flows[C]?∥Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018.
163 EIVAZI H, VEISI H, NADERI M H, et al. Deep neural networks for nonlinear model order reduction of unsteady flows[J]. Physics of Fluids202032(10): 105104.
164 SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks200920(1): 61-80.
165 KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[DB/OL]. arXiv preprint: 1609.02907, 2016.
166 PFAFF T, FORTUNATO M, SANCHEZ-GONZALEZ A, et al. Learning mesh-based simulation with graph networks[C]?∥International Conference on Learning Representations, 2021.
167 YANG Z S, DONG Y D, DENG X G, et al. AMGNET: Multi-scale graph neural networks for flow field prediction[J]. Connection Science202234(1): 2500-2519.
168 ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: A review of methods and applications[J]. AI Open20201: 57-81.
169 MOHI UD DIN A, QURESHI S. A review of challenges and solutions in the design and implementation of deep graph neural networks[J]. International Journal of Computers and Applications202345(3): 221-230.
170 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems201730: 5998-6008.
171 SHEN L M, DENG L, LIU X L, et al. A generative adversarial network based on an efficient transformer for high-fidelity flow field reconstruction[J]. Physics of Fluids202436(7): 075184.
172 SHEN L M, DENG L, WANG Y Q, et al. PCSAGAN: A physics-constrained generative network based on self-attention for high-fidelity flow field reconstruction[J]. Journal of Visualization202427(4): 661-676.
173 SUN X X, LIU Y L, ZHANG W W, et al. Development and deployment of data-driven turbulence model for three-dimensional complex configurations[J]. Machine Learning: Science and Technology20245(3): 035085.
174 CHEN T, CHEN H. Approximations of continuous functionals by neural networks with application to dynamic systems[J]. IEEE Transactions on Neural Networks19934(6): 910-918.
175 LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence20213: 218-229.
176 XIONG W, HUANG X M, ZHANG Z Y, et al. Koopman neural operator as a mesh-free solver of non-linear partial differential equations[J]. Journal of Computational Physics2024513: 113194.
177 ZHAO T, QIAN W Q, LIN J, et al. Learning mappings from iced airfoils to aerodynamic coefficients using a deep operator network[J]. Journal of Aerospace Engineering202336(5): 04023035.
178 唐志共, 袁先旭, 钱炜祺, 等. 高速空气动力学三大手段数据融合研究进展[J]. 空气动力学学报202341(8): 44-58.
  TANG Z G, YUAN X X, QIAN W Q, et al. Research progress on the fusion of data obtained by high-speed wind tunnels, CFD and model flight[J]. Acta Aerodynamica Sinica202341(8): 44-58 (in Chinese).
179 DUDLEY J, HUANG X, MACMILLIN E, et al. Multidisciplinary optimization of the high-speed civil transport[C]∥33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995.
180 HAFTKA R T. Combining global and local approximations[J]. AIAA Journal199129(9): 1523-1525.
181 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报202041(5): 623344.
  HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623344 (in Chinese).
182 LEWIS R, NASH S. A multigrid approach to the optimization of systems governed by differential equations[C]∥8th Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2000.
183 QIAN P Z G, JEFF WU C F. Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments[J]. Technometrics200850(2): 192-204.
184 杜涛, 陈闽慷, 李凰立, 等. 变精度模型(VCM)的自适应预处理方法研究[J]. 空气动力学学报201836(2): 315-319.
  DU T, CHEN M K, LI H L, et al. Research on adaptive preconditioning method for variable complexity model[J]. Acta Aerodynamica Sinica201836(2): 315-319 (in Chinese).
185 JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization200121(4): 345-383.
186 HAN Z H, G?RTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal201250(9): 1885-1896.
187 HAN Z H, XU C Z, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics202033(1): 31-47.
188 ZHANG M, JIAO J, ZHANG J, et al. High-efficiency data fusion aerodynamic performance modeling method for high-altitude propellers[J]. Drones20248(6): 229.
189 MENG X H, KARNIADAKIS G E. A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems[J]. Journal of Computational Physics2020401: 109020.
190 HE L, QIAN W Q, ZHAO T, et al. Multi-fidelity aerodynamic data fusion with a deep neural network modeling method[J]. Entropy202022(9): 1022.
191 LU L, PESTOURIE R, JOHNSON S G, et al. Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport[J]. Physical Review Research20224(2): 023210.
192 YANG H, CHEN S S, GAO Z H, et al. Reynolds number effect correction of multi-fidelity aerodynamic distributions from wind tunnel and simulation data[J]. Physics of Fluids202335(10): 103113.
193 FRESCA S, MANZONI A. POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition[J]. Computer Methods in Applied Mechanics and Engineering2022388: 114181.
194 FRESCA S, MANZONI A, DEDè L, et al. POD-enhanced deep learning-based reduced order models for the real-time simulation of cardiac electrophysiology in the left atrium[J]. Frontiers in Physiology202112: 679076.
195 WU X J, ZUO Z J, MA L, et al. Multi-fidelity neural network-based aerodynamic optimization framework for propeller design in electric aircraft[J]. Aerospace Science and Technology2024146: 108963.
196 UIUC Applied Aerodynamics Group. UIUC airfoil coordinates database [EB/OL]. [2025-01-17]. .
197 CHEN W, FUGE M. Synthesizing designs with interpart dependencies using hierarchical generative adversarial networks[J]. Journal of Mechanical Design2019141(11): 111403.
198 CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet: An information-rich 3D model repository [DB/OL]. arXiv preprint:1512.03012, 2015.
199 MO K C, ZHU S L, CHANG A X, et al. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding[C]?∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 909-918.
200 GUPTA A, SAVARESE S, GANGULI S, et al. Embodied intelligence via learning and evolution[J]. Nature Communications202112(1): 5721.
201 HA D, SCHMIDHUBER J, HA D, et al. Recurrent world models facilitate policy evolution[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 2455-2467.
202 WEI J, WANG X Z, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]?∥Proceedings of the 36th International Conference on Neural Information Processing Systems. New York: ACM, 2022: 24824-24837.
203 KUMAR V, GLEYZER L, KAHANA A, et al. MyCrunchgpt: A LLM assisted framework for scientific machine learning[J]. Journal of Machine Learning for Modeling and Computing20234(4): 41-72.
文章导航

/