基于改进SGS-TRI模型的湍流燃气射流红外辐射特性数值研究

  • 郝健辛 ,
  • 王强 ,
  • 胡海洋
展开
  • 1. 北京航空航天大学
    2. 北航航空航天大学能源与动力工程学院
    3. 北京航空航天大学能源与动力工程学院

收稿日期: 2024-11-19

  修回日期: 2025-01-26

  网络出版日期: 2025-02-06

基金资助

国家科技重大专项

Numerical study on infrared radiation characteristics of turbulent gas jets based on improved SGS-TRI model

  • HAO Jian-Xin ,
  • WANG Qiang ,
  • HU Hai-Yang
Expand

Received date: 2024-11-19

  Revised date: 2025-01-26

  Online published: 2025-02-06

摘要

针对现有模化方法对燃气射流SGS-TRI(sub-grid scale Turbulence-Radiation Interaction)特性预测精度过低的问题,在亚格子Snegirev关系式中引入辐射参与性组分与温度的关联脉动项;同时建立全新的、更易于在复杂工程计算中应用的动力亚格子模型系数求解算法,求解动力Smagorinsky模型与温度方差模型系数;并通过各向同性湍流的DNS计算及高温空气射流流动特性测试数据验证上述算法的合理性。在此基础上,结合多线组宽带k分布模型,计算分析了轴对称排气系统燃气喷流3-5微米波段红外信号的TRI特性与SGS-TRI特性随探测距离的变化规律,并利用多线组宽带模型的特性解释上述现象的形成机理。

本文引用格式

郝健辛 , 王强 , 胡海洋 . 基于改进SGS-TRI模型的湍流燃气射流红外辐射特性数值研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31549

Abstract

To address the issue of low prediction accuracy of gas jet SGS-TRI properties associated with existing modeling meth-ods, we introduced a correlation fluctuation term that accounts for the interaction between radiation-participating com-ponents and temperature into the sublattice Snegirev relationship. Simultaneously, we established a new model that is more user-friendly for complex projects. The algorithm employed for solving the dynamic subgrid model coefficients facilitates the calculation of the dynamic Smagorinsky model and temperature variance model coefficients. The validity of this algorithm is confirmed through direct numerical simulations (DNS) of isotropic turbulence and high-temperature air jet flow characteristic test data. Building on this foundation, we utilized the multi-line group broadband k distribution model to calculate and analyze the TRI properties and SGS-TRI properties of the 3-5 micron band infrared signal of the gas jet within an axisymmetric exhaust system, considering the detection distance. The properties of the line group broadband model elucidate the formation mechanism of the observed phenomena.

参考文献

[1]Pal G, Gupta A, Modest M F, et al.Comparison of ac-curacy and computational expense of radiation models in simulation of non-premixed turbulent jet flames[J].Combustion and Flame, 2015, 162(2):2487-2495
[2]马晓平,赵良玉.红外导引头关键技术国内外研究现状综述[J].航空兵器, 2018, 3(1):3-10
[3]Ma Xiaoping, Zhao Liangyu.An Overview of Infrared Seeker Key Technologies at Home and Abroad[J].Aero Weaponry, 2018, 3(1):3-10
[4]Ajdari E, Gutmark E, Parr T, et al.Thermal Imaging of Afterburning Plumes[J].Journal of Propulsion and Power, 1991, 7(6):873-878
[5]Kabashnikov V P, Myasnikova G I.Thermal radiation in turbulent flows temperature and concentration fluctuations[J].Heat transfer, 1985,, 17(1):116-125
[6]Liu L H, Xu X, Chen Y L.On the shapes of the pre-sumed probability density function for the modeling of turbulence–radiation interactions[J].Journal of Quantitative Spectroscopy & Radiative Trans-fer, 2004, 87(1):311-323
[7]Snegirev A Y.Statistical modeling of thermal radiation transfer in buoyant turbulent diffusion flames[J].Combustion and Flame, 2004, 136(1):51-71
[8]Fraga G C, Centeno F R, Petry A P, et al.Evaluation and optimization-based modification of a model for the mean radiative emission in a turbulent non-reactive flow[J].International Journal of Heat and Mass Transfer, 2017, 114(1):664-674
[9]Fraga G C, Coelho P J, Petry A P, et al.Development and testing of a model for turbulence-radiation interaction effects on the radiative emission[J]. Journal of Quantitative Spectroscopy and Radiative Transfer[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245(1):1-13
[10]Blunck D L, Harvazinski M E, Merkle C L, et al.Influ-ence of Turbulent Fluctuations on the Radiation Inten-sity emitted from Exhaust Plumes[J].Journal of Ther-mophysics and Heat Transfer, 2012, 26(4):581-589
[11]Damien P, Jorge A, Mouna E H, et al.Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simula-tions[J].Combustion and Flame, 2012, 159(1):1605-1618
[12]Roger M, DaSilva C B, Coelho P J.Analysis of the turbulence–radiation interactions for large eddy simu-lations of turbulent flows[J].International Journal of Heat and Mass Transfer, 2009, 52(1):2243-2254
[13]Roger M, Coelho P J, DaSilva C B.Relevance of the subgrid-scales for large eddy simulations of turbu-lence–radiation interactions in a turbulent plane jet[J].Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(7):1250-1256
[14]Chandy A J, Glaze D J, Frankel S H.A hybrid large eddy simulation/filtered mass density function for the calculation of strongly radiating turbulent flames[J].Journal of Heat Transfer, 2009, 131(5):1-9
[15]Gupta A, Haworth D C, Modest M F.Turbulence-radiation interactions in large-eddy simulations of lu-minous and nonluminous nonpremixed flames[J].Pro-ceedings of the Combustion Institute, 2013, 34(1):1281-1288
[16]Nmira F, Ma L, Consalvi J L.Assessment of subfilter-scale turbulence-radiation interaction in non-luminous pool fires[J].Proceedings of the Combustion Institute, 2021, 38(3):4927-4934
[17]Nmira F, Consalvi J L.Local contributions of resolved and subgrid turbulence-radiation interaction in LES/presumed FDF modelling of large-scale methanol pool fires[J].International Journal of Heat and Mass Transfer, 2022, 190(1):1-14
[18]Poitou D, ElHafi M, Cuenot B.Diagnosis of turbu-lence radiation interaction in turbulent flames and im-plications for modeling in large eddy simulation[J].Turkish Journal of Engineering and Environmental Sciences, 2007, 31(6):371-381
[19]Pierce C D, Moin P.A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar[J].Physics of Fluids, 1998, 10(12):3041-3044
[20]Fraga G C, Miranda F C, Fran?a F H R, et al.Assessment of a model for emission subgrid-scale turbulence-radiation interaction applied to a scale d Sandia flame DD[J].Proceedings of the Combustion Institute, 2021, 38(3):4927-4934
[21]Liu L H, Xu X, Chen Y L.On the shapes of the pre-sumed probability density function for the modeling of turbulence–radiation interactions[J].Journal of Quantitative Spectroscopy & Radiative Trans-fer, 2004, 87(1):311-323
[22]刘玉英, 吴辉霞, 薛然然, 张欣欣.TRI对湍流火焰模拟中辐射源项的影响[J].燃烧科学与技术, 2011, 17(2):121-125
[23]LIU Yu-ying, WU Hui-xia, XUE Ran-ran, ZHANG Xin-xin.Influence of TRI on Radiation Source Term During Turbulent Flame Simulation[J].Journal of Combustion Science and Technology, 2011, 17(2):121-125
[24]徐晓, 陈义良, 刘林华, 王海峰.FVM结合PDF方法研究湍流射流火焰中的辐射换热[J].中国科学技术大学学报, 2005, 35(4):549-556
[25]XU Xiao, CHEN Yi-liang, LIU Lin-hua, WANG Hai-feng.The Combination of FV and PDF Method for Ra-diation Heat Transfer in Turbulent Jet Diffusion Flames[J].JOURNAL OFUNIVERSITY OFSCIENCE ANDTECHNOLOGY OFCHINA, 2005, 35(4):549-556
[26]罗蕾, 吉洪湖, 卢浩浩, 张晨.湍流脉动对圆射流红外辐射特性的影响研究[J].红外与激光工程, 2020, 48(8):1-8
[27]Luo Lei, Ji Honghu, Lu Haohao, Zhang Chen.Influence of turbulent fluctuations on the infrared radiation characteristics of round jet flow[J].Infrared and Laser Engineering, 2020, 48(8):1-8
[28]宋绪光, 金捷, 王方.基于 LES 的射流火焰湍流辐射交互作用研究[J].北京航空航天大学学报, 2022, 48(1):2667-2676
[29]SONG X G, JIN J, ZHANG M Q, et al.Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation[J].Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8):2667-2676
[30]Cumber P S.Validation study of a turbulence radiation interaction model: Weak, intermediate and strong TRI in jet flames[J].International Journal of Heat and Mass Transfer, 2014, 79(1):1034-1047
[31]吴越, 胡海洋, 王强, 段然, 谢业平, 邓洪伟.多尺度多线组宽带k分布模型参数优化方法[J].航空动力学报, 2024, 39(2):1-15
[32]WU Yue, HU Haiyang, WANG Qiang, DUAN Ran, XIE Yeping, DENG Hongwei.Parameter optimization of multi-scale multi-group wide-band k-distribution models[J].Journal of Aerospace Power, 2024, 39(2):1-15
[33]Qiang Wang, Jianxin Hao, Haiyang Hu.Optimization of the MSMGWB models used to pre-dict remote infrared signals of jet engine in various spectral intervals[J].Infrared Physics & Technology, 2024, 140(1):1-16
[34]M. Pino Mart′?n.Subgrid-Scale Models for Compressi-ble Large-Eddy Simulations[J].Theoretical and Computational Fluid Dynamics, 2020, 13(1):361-376
[35]Meneveau C, et al.A Lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid Mechanics[J].Journal of Fluid Mechanics, 1996, 319(1):353-385
[36]P J. Coelh,.Approximate solutions of the filtered ra-diative transfer equation in large eddy simulations of turbulent reactive flows[J].Combust and Flame, 2009, 156(1):1099-1110
[37]J L. Consalvi, F. Nmira, W. Kong.On the modeling of the filtered radiative transfer equation in large eddy simulations of lab-scale sooting turbulent diffusion flames[J].Journal of Quantitative Spectroscopy & Radiative Transfer, 2018, 221(1):51-60
[38]Ravi Samtaney, D I. Pullin, Branko Kosovic,.Direct numerical simulation of decaying compressible turbu-lence and shocklet statistics[J].PHYSICS OF FLUIDS, 2001, 13(1):1415-1430
[39]Bridges, J, and Wernet, M. P..The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset,[J].NASA TM, 2011, 216(807):1-16
[40]Locke, R, Wernet, M., and Anderson, R.Rotational Raman-Based Temperature Measurements in a High-Velocity Turbulent Jet[J].NASA TM, 2017, 219(204):1-16
[41]Mielke, A, Elam, K., and Sung, C.-J.,.Multiproperty Measurements at High Sampling Rates Using Rayleigh Scattering, ” AIAA Journal, Vol. 47, No. 4, 2009, pp. 850–862.[J].AIAA Journal, 2009, 47(4):850-862
[42]Hartmann J M, Leon R L D, Taine J.Line-by-line and narrow-band statistical model calculations for H2O[J].Journal of Quantitative Spectroscopy & Radiative Transfer, 1984, 32(2):119-127
文章导航

/