最小熵增准则在激波/边界层干扰分析中的应用
收稿日期: 2024-10-29
修回日期: 2024-11-12
录用日期: 2025-01-03
网络出版日期: 2025-02-06
基金资助
国家自然科学基金(92252105);国家资助博士后研究人员计划(GZC20242231);江苏省卓越博士后计划
Application of minimum entropy production principle to analysis of shock wave/boundary layer interactions
Received date: 2024-10-29
Revised date: 2024-11-12
Accepted date: 2025-01-03
Online published: 2025-02-06
Supported by
National Natural Science Foundation of China(92252105);Postdoctoral Fellowship Program of CPSF(GZC20242231);Jiangsu Funding Program for Excellent Postdoctoral Talent
激波与边界层干扰(SWBLI)广泛存在于高速飞行器内外流场中,具有多尺度、非线性、非定常等特征,引起局部热流和压力的跃升,给流场品质及结构强度带来影响。详细探讨了激波与边界层干扰的波系结构特征与壁面压升规律,通过对几种典型场景下的激波结构分析,加深对这类复杂流动的机理认识。首先,简述了无黏激波反射理论、自由干扰理论、最小黏性耗散准则等理论模型的研究进展;随后,对比了基于边界层结构与基于激波干扰结构的两种建模思想;最后,着重阐述了最小熵增准则在求解激波与边界层干扰复杂流动问题中的应用。结果表明:最小熵增准则(MEP)作为热力学第二定律的延伸,应用于含分离流动的复杂激波干扰流场时具有较大的优势,在激波结构、压升规律的分析和预测方面表现出与试验结果较好的一致性,为激波与边界层干扰相关的基础科学问题提供了新的解决思路。
王成鹏 , 郝晨光 , 李昊 , 薛龙生 , 焦运 , 吴思雨 , 马张煜 , 袁野 , 李伟俊 , 侯普晨 . 最小熵增准则在激波/边界层干扰分析中的应用[J]. 航空学报, 2025 , 46(8) : 631458 -631458 . DOI: 10.7527/S1000-6893.2024.31458
Shock Wave/Boundary Layer Interactions (SWBLI) are prevalent in both internal and external flow fields of high-speed vehicles, characterized by multi-scale, nonlinear, and unsteady phenomena. These interactions lead to significant local increases in heat flux and pressure, which impact the flow quality and structural integrity of the vehicle. This study provides a comprehensive investigation into the shock structure characteristics and wall pressure rise behavior induced by SWBLI. By analyzing the shock structures in several representative scenarios, the underlying mechanisms of such complex flows are explored. Firstly, the progress of key theoretical models, including the inviscid shock reflection theory, free interaction theory, and minimal viscous dissipation, is reviewed. Subsequently, a comparative analysis is made between two predominant modeling approaches: one is based on boundary layer structures, and the other is based on shock wave interaction structures. Finally, the application of the principle of Minimum Entropy Production (MEP), an extension of the second law of thermodynamics, to SWBLI-related complex flow fields is discussed. The results indicate that the MEP principle offers substantial advantages when applied to SWBLI flows involving separation. The results obtained using the principle exhibits a high degree of agreement with experimental results in analysis and prediction of both shock structure and pressure rise, thus providing a novel perspective for addressing the fundamental scientific challenges associated with SWBLI.
1 | 安复兴, 李磊, 苏伟, 等. 高超声速飞行器气动设计中的若干关键问题[J]. 中国科学: 物理学 力学 天文学, 2021, 51(10): 6-25. |
AN F X, LI L, SU W, et al. Key issues in hypersonic vehicle aerodynamic design[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(10): 6-25 (in Chinese). | |
2 | HARSHA P, KEEL L, CASTROGIOVANNI A, et al. X-43A vehicle design and manufacture: AIAA-2005-3334 [R]. Reston: AIAA, 2005. |
3 | 薛龙生. 高超飞行器前体进气道一体化气动设计与试验研究[D]. 南京: 南京航空航天大学, 2018. |
XUE L S. Integrated aerodynamic design and experimental study on forebody and inlet of a hypersonic vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
4 | 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. |
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese). | |
5 | DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39(8): 1517-1531. |
6 | CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46: 469-492. |
7 | 童福林, 周桂宇, 孙东, 等. 膨胀效应对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(9): 123731. |
TONG F L, ZHOU G Y, SUN D, et al. Expansion effect on shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123731 (in Chinese). | |
8 | 陆小革, 易仕和, 何霖, 等. 高分辨率激波/边界层干扰时间演化过程分析[J]. 航空学报, 2022, 43(1): 626147. |
LU X G, YI S H, HE L, et al. Time evolution process of high resolution shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 626147 (in Chinese). | |
9 | 刘晓东, 刘朋欣, 李辰, 等. 高焓激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2023, 44(13): 127832. |
LIU X D, LIU P X, LI C, et al. Direct numerical simulation of high enthalpy shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127832 (in Chinese). | |
10 | ANDREOPOULOS J, MUCK K. Some new aspects of the shock wave boundary layer interaction in compression ramp flows: AIAA-1986-0342[R]. Reston: AIAA, 1986. |
11 | HUMBLE R, SCARANO F, OUDHEUSDEN B. Unsteady flow organization of a shock wave/turbulent boundary layer interaction[C]∥IUTAM Symposium on Unsteady Separated Flows and their Control. Dordrecht: Springer, 2009: 319-330. |
12 | HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122. |
13 | TAN H J, SUN S, YIN Z L. Oscillatory flows of rectangular hypersonic inlet unstart caused by downstream mass-flow choking[J]. Journal of Propulsion and Power, 2009, 25(1): 138-147. |
14 | DUSSAUGE J P, DUPONT P, DEBIèVE J F. Unsteadiness in shock wave boundary layer interactions with separation?[J]. Aerospace Science and Technology, 2006, 10(2): 85-91. |
15 | VON NEUMANN J. Oblique reflection of shocks, explosive research rep 12[R]. Washington D.C.: Navy Department, Bureau of Ordnance, 1943. |
16 | VON NEUMANN J. Refraction, intersection and reflection of shock waves: NAVORD Rep 203-45[R]. Washington D.C.: Navy Department, Bureau of Ordnance, 1943. |
17 | HENDERSON L F, LOZZI A. Experiments on transition of Mach reflexion[J]. Journal of Fluid Mechanics, 1975, 68(1): 139-145. |
18 | M?LDER S. Particular conditions for the termination of regular reflection of shock waves[J]. Transactions of the Canadian Aeronautics and Space Institute, 1979, 25(1):44-49. |
19 | KAWAMURA R, SAITO H. Reflection of shock waves-1 Pseudo-stationary case[J]. Journal of the Physical Society of Japan, 1956, 11(5): 584-592. |
20 | CHAPMAN D, KUEHN D M, LARSON H K. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition: NACA Rept. 1356[R]. Washington, D.C.: NACA, 1958. |
21 | ERDOS J, PALLONE A. Shock-boundary layer interaction and flow separation[C]?∥Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute. Stanford: Stanford University Press, 1962: 239-254. |
22 | BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011: 423-427. |
23 | MATHEIS J, HICKEL S. On the transition between regular and irregular shock patterns of shock-wave/boundary-layer interactions[J]. Journal of Fluid Mechanics, 2015, 776: 200-234. |
24 | GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. A parametric study of laminar and transitional oblique shock wave reflections[J]. Journal of Fluid Mechanics, 2018, 844: 187-215. |
25 | THIVET F, KNIGHT D D, ZHELTOVODOV A A, et al. Insights in turbulence modeling for crossing-shock-wave/boundary-layer interactions[J]. AIAA Journal, 2001, 39(6): 985-995. |
26 | TAO Y, FAN X Q, ZHAO Y L. Viscous effects of shock reflection hysteresis in steady supersonic flows[J]. Journal of Fluid Mechanics, 2014, 759: 134-148. |
27 | TAO Y, LIU W D, FAN X Q, et al. A study of the asymmetric shock reflection configurations in steady flows[J]. Journal of Fluid Mechanics, 2017, 825: 1-15. |
28 | DéLERY J, MARVIN J G, RESHOTKO E. Shock-wave boundary layer interactions: AGARD-AG-280 [R]. Paris: AGARD, 1986. |
29 | GROSSMAN I J, BRUCE P J K. Confinement effects on regular-irregular transition in shock-wave-boundary-layer interactions[J]. Journal of Fluid Mechanics, 2018, 853: 171-204. |
30 | XIE W Z, YANG S Z, ZENG C, et al. Improvement of the free-interaction theory for shock wave/turbulent boundary layer interactions[J]. Physics of Fluids, 2021, 33(7): 075104. |
31 | HU Y C, ZHOU W F, YANG Y G, et al. Prediction of plateau and peak of pressure in a compression ramp flow with large separation[J]. Physics of Fluids, 2020, 32(10): 101702. |
32 | 程剑锐, 施崇广, 瞿丽霞, 等. 二维弯曲激波/湍流边界层干扰流动理论建模[J]. 航空学报, 2022, 43(9): 125993. |
CHENG J R, SHI C G, QU L X, et al. Theoretical model of 2D curved shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 125993 (in Chinese). | |
33 | BAI C Y, WU Z N. Type Ⅳ shock interaction with a two-branch structured transonic jet[J]. Journal of Fluid Mechanics, 2022, 941: A45. |
34 | GLANSDORFF P, PRIGOGINE I, HILL R N. Thermodynamic theory of structure, stability and fluctuations[J]. American Journal of Physics, 1973, 41(1): 147-148. |
35 | LI H, BEN-DOR G. Application of the principle of minimum entropy production to shock wave reflections. I. Steady flows[J]. Journal of Applied Physics,1996, 80(4): 2027-2037. |
36 | CHPOUN A, PASSEREL D, LI H, et al. Reconsideration of oblique shock wave reflections in steady flows. Part 1. Experimental investigation[J]. Journal of Fluid Mechanics, 1995, 301: 19-35. |
37 | WANG C P, XUE L S, CHENG K M. Application of the minimum entropy production principle to shock reflection induced by separation[J]. Journal of Fluid Mechanics, 2018, 857: 784-805. |
38 | 杨馨. 基于最小熵增原理的分离诱导的激波反射结构研究[D]. 南京: 南京航空航天大学, 2020. |
YANG X. Study on the structure of shock reflection induced by separation based on the principle of minimum entropy production[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
39 | XUE L S, SCHRIJER F F J, VAN OUDHEUSDEN W B, et al. Theoretical study on regular reflection of shock wave-boundary layer interactions[J]. Journal of Fluid Mechanics, 2020, 899: A30. |
40 | XUE L S, JIAO Y, WANG C P, et al. Pressure plateau of separation induced by shock impingement in a Mach 5 flow[J]. Journal of Fluid Mechaics, 2023, 972: R1. |
41 | XUE L S, WANG C P, CHENG K M. A study on the RR-to-MR transition of shock wave reflections near the leading edge in hypersonic flows[J]. Journal of Fluid Mechanics, 2021, 919: A40. |
42 | 徐培. 超声速流动中复杂激波干扰结构研究[D]. 南京: 南京航空航天大学, 2019. |
XU P. Complex shock wave interaction in supersonic flow[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
43 | HUNT R L, GAMBA M. Shock train unsteadiness characteristics, oblique-to-normal transition, and three-dimensional leading shock structure[J]. AIAA Journal, 2018, 56(4): 1569-1587. |
44 | MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100. |
45 | WANG C P, XUE L S, TIAN X A. Experimental characteristics of oblique shock train upstream propagation[J]. Chinese Journal of Aeronautics, 2017, 30(2): 663-676. |
46 | SUN B, WANG C P, ZHUO C F. Theoretical model and numerical analysis for asymmetry of shock train in supersonic flows[J]. Symmetry, 2020, 12(4): 518. |
47 | 杨锦富. 激波反射与分离主控的高速流动结构分析[D]. 南京: 南京航空航天大学, 2020. |
YANG J F. Analysis of high speed flow structure controlled by shock reflection and separation?[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
48 | 周博宇. 复杂流动条件下的激波/附面层干扰结构研究[D]. 南京: 南京航空航天大学, 2021. |
ZHOU B Y. Study on the structure of shock wave and boundary layer under complicated incoming flow?[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
49 | 徐惊雷, 马静, 沙江, 等. 超声速复杂内、外流场的PIV实验研究[C]∥第三届高超声速科技学术会议会议文集. 南京: 南京航空航天大学, 2010: 8. |
XU J L, MA J, SHA J, et al. PIV experimental research on the supersonic complex internal/external flowfield[C]∥Proceedings of the Third Hypersonic Science and Technology Conference. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 8 (in Chinese). | |
50 | 张蓝天. 压缩拐角的激波干扰流场结构研究[D].南京: 南京航空航天大学, 2023. |
ZHNAG L T. Research on the structure of shock wave interference flow field at compressed corner[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023 (in Chinese). |
/
〈 |
|
〉 |