飞行器设计生成式模型专栏

扩散模型驱动的超临界翼型多目标生成式设计

  • 王景 ,
  • 柳位 ,
  • 谢海润 ,
  • 张淼 ,
  • 马涂亮
展开
  • 1.上海交通大学 航空航天学院,上海 201100
    2.上海飞机设计研究院,上海 201210 3.中国科学院 微小卫星创新研究院 卫星数字化技术重点实验室,上海 201210
.E-mail: xiehr@microsate.ac.cn

收稿日期: 2024-09-14

  修回日期: 2024-12-18

  录用日期: 2025-01-20

  网络出版日期: 2025-02-06

基金资助

国家自然科学基金(U23A2069);上海市自然科学基金(24ZR1436800)

Diffusion model-driven multi-objective generative design of supercritical airfoils

  • Jing WANG ,
  • Wei LIU ,
  • Hairun XIE ,
  • Miao ZHANG ,
  • Tuliang MA
Expand
  • 1.School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai  201100,China
    2.Shanghai Aircraft Design and Research Institute,Shanghai  201210,China
    3.Key Laboratory for Satellite Digitalization Technology,Innovation Academy for Microsatellites,Chinese Academy of Sciences,Shanghai  201210,China

Received date: 2024-09-14

  Revised date: 2024-12-18

  Accepted date: 2025-01-20

  Online published: 2025-02-06

Supported by

National Natural Science Foundation of China(U23A2069);Shanghai Natural Science Foundation(24ZR1436800)

摘要

在飞机气动设计的工程实践中,通常由总体专业提出设计指标,气动设计部门通过多次迭代优化和大量数值模拟计算,逐步实现设计目标,这一过程通常耗费巨大资源。生成式模型展现出直接生成符合预定目标设计方案的潜力,能够显著减少传统设计中的迭代过程。研究中提出了一种基于扩散模型的多目标生成式翼型设计方法,通过将抖振升力系数、巡航阻力系数及厚度等多个性能指标作为条件,生成能够同时满足这些指标的翼型设计方案。采用条件扩散模型来逐步生成设计空间中的有效翼型,避免了传统优化方法中复杂的迭代计算。通过与条件变分自编码器方法的对比试验,展示了扩散模型在生成多样性和条件符合度等方面的优势。结果表明,扩散模型不仅能够生成符合性能要求的翼型,还具备更强的多样性和设计空间探索能力,为未来翼型设计提供了一种高效的新途径。

本文引用格式

王景 , 柳位 , 谢海润 , 张淼 , 马涂亮 . 扩散模型驱动的超临界翼型多目标生成式设计[J]. 航空学报, 2025 , 46(10) : 631210 -631210 . DOI: 10.7527/S1000-6893.2025.31210

Abstract

In the engineering practice of aircraft aerodynamic design, design specifications are typically proposed by the overall engineering team, while the aerodynamic design department implements design goals through numerous iterations and extensive numerical simulations. This process usually consumes significant resources. Generative models show the potential to directly generate design solutions that meet predefined goals, significantly reducing the iterative process in traditional design. This paper proposes a multi-objective generative airfoil design method based on diffusion models. By conditioning on multiple performance metrics such as buffeting lift coefficient, cruise drag coefficient and thickness, the method generates the airfoil designs that simultaneously satisfy these metrics. The use of conditional diffusion models to progressively generate effective airfoils in the design space avoids the complex iterative calculations of traditional optimization methods. Comparative experiments with conditional variational autoencoders demonstrate the advantages of diffusion models in terms of generation accuracy, stability, and diversity. The results indicate that diffusion models can not only generate airfoils that meet performance requirements but also offer greater diversity and design space exploration capability, providing an efficient new approach for future airfoil design.

参考文献

1 韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史、 现状与未来发展[J]. 空气动力学学报202139(6): 1-36.
  HAN Z H, GAO Z H, SONG W P, et al. On airfoil research and development: history, current status, and future directions[J]. Acta Aerodynamica Sinica202139(6): 1-36 (in Chinese).
2 BARRETT T R, BRESSLOFF N W, KEANE A J. Airfoil shape design and optimization using multifidelity analysis and embedded inverse design[J]. AIAA Journal200644(9): 2051-2060.
3 SUN H. Wind turbine airfoil design using response surface method[J]. Journal of Mechanical Science and Technology201125(5): 1335-1340.
4 XIA C-C, JIANG T-T, CHEN W-F. Particle swarm optimization of aerodynamic shapes with nonuniform shape parameter-based radial basis function[J]. Journal of Aerospace Engineering201730(3): 04016089.
5 Lighthill M J. A new method of two-dimensional aerodynamic design[R]. London: Aeronautical Research Council, 1945.
6 TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft198522(8): 655-660.
7 BUI-THANH T, DAMODARAN M, WILLCOX K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition[J]. AIAA Journal200442(8): 1505-1516.
8 白俊强, 邱亚松, 华俊. 改进型Gappy POD翼型反设计方法[J]. 航空学报201334(4): 762-771.
  Bai J, Qiu Y, Hua J. Improved Airfoil Inverse Design Method Based on Gappy POD[J]. Acta Aeronauticaet Astronautica Sinica. 201334(4): 762-771 (in Chinese).
9 OBAYASHI S. Inverse optimization method for aerodynamic shape design[M]∥Recent Development of Aerodynamic Design Methodologies. Wiesbaden: Vieweg+Teubner Verlag, 1999: 25-53.
10 KHARAL A, SALEEM A. Neural networks based airfoil generation for a given C p using Bezier-PARSEC parameterization[J]. Aerospace Science and Technology201223(1): 330-344.
11 SUN G, SUN Y J, WANG S Y. Artificial neural network based inverse design: Airfoils and wings[J]. Aerospace Science and Technology201542: 415-428.
12 ZHANG Y, SUNG W J, MAVRIS D N. Application of convolutional neural network to predict airfoil lift coefficient[C]∥2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2018.
13 YANG Y J, LI R Z, ZHANG Y F, et al. Flowfield prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal202260(10): 5805-5820.
14 SEKAR V, ZHANG M Q, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal201957(3): 993-1003.
15 KINGMA D P, REZENDE D J, MOHAMED S, et al. Semi-supervised learning with deep generative models[C]∥Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2014: 3581-3589.
16 Mirza M, Osindero S. Conditional generative adversarial nets[Z/OL]. arXiv preprint: 1411.1784, 2014.
17 陈树生, 贾苜梁, 林家豪, 等. 生成式模型赋能飞行器技术应用研究进展与展望[J]. 航空学报202546(10): 631194.
  CHEN S S, JIA M L, LIN J H, et al. Research progress and prospects of empowering aircraft technology applications with generative models[J]. Acta Aeronautica et Astronautica Sinica202546(10): 631194 (in Chinese).
18 吴光辉, 王景, 谢海润, 等. 数据与知识联合赋能的民机智能气动设计[J]. 航空学报202546(6): 531485.
  WU G H, WANG J, XIE H R, et al. Intelligent aerodynamic design of civil aircraft based on data and knowledge joint empowerment[J]. Acta Aeronautica et Astronautica Sinica202546(6): 531485 (in Chinese).
19 ACHOUR G, SUNG W J, PINON-FISCHER O J, et al. Development of a conditional generative adversarial network for airfoil shape optimization[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
20 BERTRAND X, TOST F, CHAMPAGNEUX S. Wing airfoil pressure calibration with deep learning[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
21 DU X S, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
22 田洁华, 孙迪, 屈峰, 等. 基于CST-GAN的翼型参数化方法[J]. 航空学报202344(18): 128280.
  TIAN J H, SUN D, QU F, et al. Airfoil parameterization method based on CST-GAN[J]. Acta Aeronautica et Astronautica Sinica202344(18): 128280 (in Chinese).
23 CHEN W, FUGE M. BézierGAN: automatic generation of smooth curves from interpretable low-dimensional parameters[EB/OL]. (2018-08) [2025-02-26]. .
24 HEYRANI NOBARI A, CHEN W, AHMED F. Range-GAN: range-constrained generative adversarial network for conditioned design synthesis[C]∥ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2021: V03BT03A039.
25 XIE H R, WANG J, ZHANG M. Parametric generative schemes with geometric constraints for encoding and synthesizing airfoils[J]. Engineering Applications of Artificial Intelligence2024128: 107505.
26 WANG J, LI R, HE C, et al. An inverse design method for supercritical airfoil based on conditional generative models[J]. Chinese Journal of Aeronautics202235(3): 62-74.
27 LIU J, WU J Y, XIE H R, et al. AFBench: a large-scale benchmark for airfoil design[EB/OL]. (2024-06) [2025-2-26]. .
28 GRAVES R, FARIMANI A B. Airfoil diffusion: denoising diffusion model for conditional airfoil generation[EB/OL]. (2024-8) [2025-02-26]. .
29 LI R, ZHANG Y, CHEN H. Pressure distribution feature-oriented sampling for statistical analysis of supercritical airfoil aerodynamics[J]. Chinese Journal of Aeronautics202235(4):134-147.
30 白文. 经典跨声速翼型RAE2822数据分析[J]. 空气动力学学报202341(6): 55-70.
  BAI W. Analyses of wind-tunnel test data of the transonic airfoil RAE2822[J]. Acta Aerodynamica Sinica202341(6): 55-70 (in Chinese).
31 HO J, JAIN A, ABBEEL P, et al. Denoising diffusion probabilistic models[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 6840-6851.
32 HO J, SALIMANS T. Classifier-free diffusion guidance[D/OL]. arXiv preprint: 2207.12598, 2022.
33 LAURENS V D M, Hinton G.Visualizing Data using t-SNE[J].Journal of Machine Learning Research20089(86): 2579-2605.
34 XIE H R, WANG J, ZHANG M. Knowledge-embedded meta-learning model for lift coefficient prediction of airfoils[J]. Expert Systems with Applications2023233: 121002.
文章导航

/