充气式减速结构壁面变形对热化学非平衡流场的影响
收稿日期: 2024-05-23
修回日期: 2024-06-19
录用日期: 2024-07-12
网络出版日期: 2024-07-23
基金资助
国家自然科学基金(12005014)
Influence of surface deformation of inflatable deceleration structure on thermochemical non-equilibrium flow
Received date: 2024-05-23
Revised date: 2024-06-19
Accepted date: 2024-07-12
Online published: 2024-07-23
Supported by
National Natural Science Foundation of China(12005014)
在高超声速来流压力的作用下,充气式减速结构壁面在迎风面会发生变形,进而对流场产生影响。基于热化学非平衡反应模型,对充气式减速结构在壁面变形前后的流场进行了仿真计算,分析了在不同来流迎角下,壁面变形对流场特征、壁面热流及壁面压力的影响。充气式减速结构外形为球锥组合体,由刚性端面和6个充气环组成,半径为2.4 m,半锥角为60°。计算采用5组分双温度热化学反应模型,壁面催化条件包括非催化壁面和完全催化壁面。结果表明:壁面变形会导致充气式减速结构激波层内出现周期性的温度和压力波动,以及离解组分的非均匀分布;壁面变形对流场各参数的影响随着来流迎角增大而减弱;壁面变形后,流速的变化导致壁面在充气环处热流升高、压力降低,在充气环之间凹陷处热流降低、压力升高,壁面变形对压力造成的影响要弱于对热流的影响;壁面变形后充气减速结构前端面气动力系数无明显变化。
刘宇 , 赵淼 , 何青松 . 充气式减速结构壁面变形对热化学非平衡流场的影响[J]. 航空学报, 2025 , 46(1) : 630727 -630727 . DOI: 10.7527/S1000-6893.2024.30727
Under the pressure of hypersonic inflow, the surface of the inflatable deceleration structure will deform on the windward side, thereby changing the flow field. To analyze the influence of surface deformation on the flow, simulations are conducted for the flow past the inflatable deceleration structure before and after surface deformation based on the thermochemical non-equilibrium reaction model. The shape of inflatable deceleration structure is a blunt nosed cone with a radius of 2.4 m and a half cone angle of 60°, consisting of a rigid head face and 6 inflatable rings. The numerical model adopts a 5-component dual-temperature thermochemical reaction model, and the wall catalytic conditions include non-catalytic and fully catalytic wall. The influence of surface deformation on flow characteristics, heat flux, and pressure under different attack angles is investigated. The results show that surface deformation can lead to periodic temperature and pressure fluctuations in the shock layer of the inflatable deceleration structure, as well as non-uniform distribution of dissociated components. The influence of surface deformation on flow variables weakens as the attack angle increases. After surface deformation, the change in velocity leads to increase in the heat flux and decrease in the pressure at inflatable rings, as well as decrease in the heat flux and increase in the pressure at the concavities between inflatable rings. The effect of surface deformation on the pressure is weaker than that on the heat flux. There is no significant change in the aerodynamic coefficients of the front face of the inflatable deceleration structure after deformation.
1 | 曹旭, 廖航, 许望晶, 等. 充气式减速技术试验器的设计和飞行试验[J]. 载人航天, 2018, 24(6): 802-808. |
CAO X, LIAO H, XU W J, et al. Design and flight test of demonstration aircraft with inflatable reentry and descent technology[J]. Manned Spaceflight, 2018, 24(6): 802-808 (in Chinese). | |
2 | GILBERT C, MAZOUE F, ORTEGA G, et al. New space application opportunities based on the inflatable reentry & descent technology IRDT[C]∥Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003. |
3 | OLDS A, BECK R, BOSE D M, et al. IRVE-3 post-flight reconstruction[C]∥Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. |
4 | LITTON D, BOSE D, CHEATWOOD F, et al. Inflatable re-entry vehicle experiment (IRVE)-4 overview[C]∥Proceedings of the 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011. |
5 | YAMADA K, NAGATA Y, ABE T, et al. Reentry demonstration of flare-type membrane aeroshell for atmospheric entry vehicle using a sounding rocket[C]∥Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. |
6 | 常耀予, 刘昕, 刘飞, 等. 美国充气减速飞行器近地轨道飞行试验分析[J]. 中国航天, 2023(5): 67-73. |
CHANG Y Y, LIU X, LIU F, et al. Experimental analysis of American inflatable deceleration vehicle in near-earth orbit flight[J]. Aerospace China, 2023(5): 67-73 (in Chinese). | |
7 | 张思宇, 余莉, 曹旭, 等. 再入返回器极端热载荷预测方法[J]. 航天返回与遥感, 2019, 40(2): 25-32. |
ZHANG S Y, YU L, CAO X, et al. Prediction method for extreme thermal load of reentry capsule[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(2): 25-32 (in Chinese). | |
8 | 高艺航, 贺卫亮. 充气式返回舱气动热特性研究[J]. 航天返回与遥感, 2014, 35(4): 17-25. |
GAO Y H, HE W L. Research on aerodynamic heating characteristics of inflatable reentry decelerator[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(4): 17-25 (in Chinese). | |
9 | 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1): 325-345. |
PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 325-345 (in Chinese). | |
10 | 粟斯尧, 石义雷, 柳森, 等. 有限催化对返回舱气动热环境影响[J]. 空气动力学学报, 2018, 36(5): 878-884. |
SU S Y, SHI Y L, LIU S, et al. Finite-rate surface catalysis effects on aero-heating environment of a reentry capsule[J]. Acta Aerodynamica Sinica, 2018, 36(5): 878-884 (in Chinese). | |
11 | HE Q S, SUN S R, CAO X, et al. Non-equilibrium modeling on the aerothermodynamic characteristics of hypersonic inflatable reentry vehicle[J]. Aerospace Science and Technology, 2023, 141: 108524. |
12 | HOLLIS B R. Surface heating and boundary-layer transition on a hypersonic inflatable aerodynamic decelerator[J]. Journal of Spacecraft and Rockets, 2018, 55(4): 856-876. |
13 | 刘宏康, 陈坚强, 向星皓, 等. 改进 k?ω?γ转捩模式对不同雷诺数下HIAD的转捩预测[J]. 航空学报, 2023, 44(6): 126868. |
LIU H K, CHEN J Q, XIANG X H, et al. Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γ transition mode[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 126868 (in Chinese). | |
14 | GUO J H, LIN G P, BU X Q, et al. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator[J]. Acta Astronautica, 2017, 136: 421-433. |
15 | MCBRIDE B J, ZEHE M J, GORDON S. NASA glenn coefficients for calculating thermodynamic properties of individual species[R]. Cleveland: Glenn Research Center, 2002. |
16 | YOON B, RASMUSSEN M L. Diffusion effects in hypersonic flows with a ternary mixture[J]. KSME International Journal, 1999, 13(5): 432-442. |
17 | WILKE C R. A viscosity equation for gas mixtures[J]. The Journal of Chemical Physics, 1950, 18(4): 517-519. |
18 | RIBEIRO V G, ZABADAL J G, MONTICELLI C O, et al. Estimating heat transfer coefficients for solid-gas interfaces using the Landau-Teller model?[J]. Applied Mathematics and Computation, 2017, 301: 135-139. |
19 | PARK C. On convergence of computation of chemically reacting flows[C]∥Proceedings of the 23rd Aerospace Sciences Meeting. Reston: AIAA, 1985. |
20 | GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K?[R]. Washington, D.C.: NASA Langley Research Center, 1989. |
21 | DUNN M, KANG S. Theoretical and experimental studies of reentry plasma[R]. Buffalo: Cornell Aeronautical Laboratory, 1973. |
22 | 丁明松, 董维中, 高铁锁, 等. 局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报, 2018, 39(3): 121588. |
DING M S, DONG W Z, GAO T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121588 (in Chinese). | |
23 | MUYLAERT J, WALPOT L, HAEUSER J, et al. Standard model testing in the European High Enthalpy Facility F4 andextrapolation to flight[C]∥Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
24 | 杨肖峰, 桂业伟, 邱波, 等. 高焓CO2气流壁面两步催化机制对非平衡气动加热影响的数值模拟[J]. 国防科技大学学报, 2020, 42(1): 108-116. |
YANG X F, GUI Y W, QIU B, et al. Numerical investigation on influence of surface two-step catalytic mechanism on non-equilibrium aerodynamic heating for high-enthalpy CO2 flow[J]. Journal of National University of Defense Technology, 2020, 42(1): 108-116 (in Chinese). | |
25 | 张翔, 阎超, 杨威, 等. 高超声速飞行器气动热网格依赖性研究[J]. 战术导弹技术, 2016(3): 21-27. |
ZHANG X, YAN C, YANG W, et al. Investigation of the grid-dependency in heat transfer simulation for hypersonic vehicle[J]. Tactical Missile Technology, 2016(3): 21-27 (in Chinese). | |
26 | MEN’SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334. |
27 | LICHODZIEJEWSKI L, KELLEY C, TUTT B, et al. Design and testing of the inflatable aeroshell for the IRVE-3 flight experiment[C]∥AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2012. |
28 | 李俊红, 潘宏禄, 程晓丽, 等. 标模外形化学非平衡流场数值模拟[J]. 计算物理, 2015, 32(4): 395-402. |
LI J H, PAN H L, CHENG X L, et al. Numerical simulation on chemical nonequilibrium flowfield in standard model[J]. Chinese Journal of Computational Physics, 2015, 32(4): 395-402 (in Chinese). | |
29 | 杨建龙, 刘猛, 阿嵘. 高超声速热化学非平衡对气动热环境影响[J]. 北京航空航天大学学报, 2017, 43(10): 2063-2072. |
YANG J L, LIU M, A R. Influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2063-2072 (in Chinese). |
/
〈 |
|
〉 |