为了开发适用于可重复使用运载火箭的宽工况范围涡轮泵,基于可视化实验技术与缓/速变参数分析技术研究了不同流量系数下某三叶片诱导轮空化动态特性。结果表明,诱导轮叶尖压力脉动幅值随流量增大逐渐降低,并随空化数降低呈先增大后减小的趋势,并在扬程断裂空化数附近降低至低于无空化工况。实验在90%~110%的流量下观察到旋转空化发生,旋转空化的发生范围随流量系数降低而向大空化数范围拓展,这表明诱导轮空化不稳定性可能对涡轮泵宽工况稳定工作带来隐患。此外,在70%~80%额定流量系数工况下,观察到频率约0.9倍轴频的次同步空化不稳定现象与频率约0.7倍轴频的周向不稳定现象,分析表明,该空化不稳定现象是由扬程断裂点附近扬程-流量曲线的正斜率诱发的旋转阻塞及阻塞喘振现象。
[1] 包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023, 44(23):629555.
[2] 刘士杰,王东,田原,等. 液体火箭发动机可重复使用性设计技术分析[J]. 火箭推进,2024:50(1):67-77.
[3] 项乐, 许开富, 陈晖, 等. 液体火箭发动机涡轮泵低温空化实验研究进展[J]. 航空学报,2023:44(7):207131.
[4] 李斌, 李程, 高玉闪, 等. 重复使用运载火箭液体动力技术进展[J]. 火箭推进,2024:50(1):1-11
[5] Japikse D. Centrifugal pump design and performance analysis[M]. Wilder : Concepts ETI, Inc, 1997
[6] Brennen C E. Cavitation and Bubble Dynamics[M], Cambridge Press, 1999
[7] 项乐,陈晖,谭永华等,诱导轮空化流动特性实验研究[J],农业机械学报,2019,50(12):125-132.
[8] Tsujimoto Y, Yoshida, Y,Maekawa,Y, Observations of Oscillating Cavitation of an Inducer[J] Journal of Fluid Engineering,1997,119(4):775-781.
[9]. Tsujimoto Y, Kamijo K, Yoshida Y, A Theoretical Analy-sis of Rotating Cavitation in Inducers[J].Journal of Fluid Engineering,1993,115(4):135-141.
[10]. HashimotoT, YoshidaM,Watanabe M, et al. Experi-mental Study on Rotating Cavitation of Rocket Propel-lant PumpInducers[J]. Journal of Propulsion and Pow-er,1997, 13(4): 488–494.
[11]. Pace G, Valentini D, Pasini A, et al. Analysis of Flow Instabilities on a Three-Bladed Axial Inducer in Fixed and Rotating Frames[J]. Journal of Fluids Engineering, 2019, 141(4):041104.
[12]. Pace G, Valentini D, Pasini A, et al. Geometry Effects on Flow Instabilities of Different Three-Bladed Inducers[J]. Journal of Fluids Engineering, 2015, 137(4): 1-12.
[13]. Lettieri C, Spakovszky Z, Jackson D, et al., Characteri-zation of Cavitation Instabilities in a Four-Bladed Tur-bopump Inducer[J], Journal of Propulsion and Power,2016, 34(2):1-11.
[14]. Kim J, Song S J, Visualization of Rotating Cavitation Oscillation Mechanism in a Turbopump Inducer[J], Journal of Fluids Engineering, 2019, 141(9):091103.
[15]. Xiang L, Tan Y H, Chen H, Xu K F, Experimental Inves-tigation of Cavitation Instabilities in Inducer with Dif-ferent Tip Clearances[J]. Chinese Journal of Aeronautics. 2021, 34(9):168-177
[16]. Wang C M, Xiang L, Tan Y H, Chen H, Xu K F, Exper-imental Investigation of Thermal Effect on Cavitation Characteristics in a Liquid Rocket Engine Turbopump Inducer[J]. Chinese Journal of Aeronautics. 2021, 34(8):48-57.
[17]. Fujii A, Azuma S, et al. High order rotating cavitation in an inducer[J]. International Journal of Rotating Machin-ery, 2004, 10(4): 241-251.
[18]. Motoi H, Oguchi H, Hasegawa K, et al. Higher order cavitation surge and stress fluctuation in an inducer[C]. 45th Turbomachinery Society Meeting, 2000.
[19]. Boyce P B. Tip vortex back flow cavitation and suppres-sion in high speed pump inducers[D]. PhD thesis, Los Angeles: University of California, 2010.
[20]. Li X, Li J, W, Cai GB, Study on Cavitation Instabilities in a Three-Bladed Inducer [J], Journal of Propulsion and Power, 2015, 31(5):1051-1056.
[21]. 陈晖,李斌,张恩昭,液体火箭发动机高转速诱导轮旋转空化[J],推进技术,2009, 35(3):1-5.
[22]. Koki T, Sota K, Satoshi K, et al. The similarity law of cavitation number on cavitation instability in liquid rocket inducer[J]. Journal of Fluid Engineering, 2023, 145(1):111201.
[23]. Gulich J F. Selection criteria for suction impellers of centrifugal pumps[J]. World Pumps, 2001, 412(1): 28-34.
[24]. Chen G T, Greitzer E M, Tan C S. Similatity Analysis of Compressor Tip Clearance Flow Structure[J]. Journal of Turbomachinery, 1991,113: 260-269.
[25]. Hadavandi R, Pace G, Valentini D, et al. Identification of Cavitation Instabilities on a Three-Bladed Inducer by Means of Strain Gages[J]. Journal of Fluids Engineering, 2020, 142, 021210.
[26]. Pasini A, Hadavandi R, Valentini D, et al. Dynamics of the Blade Channel of an Inducer Under Cavitation-Induced Instabilities[J]. Journal of Fluids Engineering, 2019, 141, 041103.
[27]. Watanabe S, Tsujimoto Y. Prediction of cavitation surge onset point by one-dimensional stability analysis[J]. 2021, 14(2): 199-207.
[28]. Tsujimo Y, Kamijo K, Brennen C E. Unified Treatment of Flow Instabilities of Turbomachines[C]. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibt, Los Angeles USA, 1999.
[29]. Yurt A S, Akira F, Yoshinobu T. Rotating Choke in Cavi-tating Turbopump Inducer[J], Journal of Fluids Engi-neering, 2004, 126(1):87-93.
[30]. Uchiumi M, Kamijo K. Occurrence Range of a Rotating Stall Type Phenomenon in a High Head Liquid Hydro-gen Inducer[C]. Proc. Of the 12th International Sympo-sium on Transport Phenomena and Dynamics of Rotat-ing Machinery, 2008.
[31]. Watanabe T, Kang D, Cervone A,et al. Choked Surge in a Cavitating Turbopump inducer[J]. International Jour-nal of Fluid Mahinery and Systems, 2008, 1(1):64-75.