[1] 顾孟奇, 朱家才, 郭万林, 薛松. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报, 2023, 44(23): 34-57.
GU M Q, ZHU J C, GUO W L, XUE S. Prospects for fatigue durability and reliability of reusable rocket struc-tures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 34-57.(in Chinese)
[2] Zhao B F, Xie L Y, Song J X, Ren J G, Wang B W, Zhang S J. Fatigue life prediction of aero-engine com-pressor disk based on a new stress field intensity ap-proach[J]. International Journal of Mechanical Sciences, 2020, 165: 105190.
[3] Kim H J, Jang B S, Du Kim J. Fatigue-damage predic-tion for ship and offshore structures under wide-banded non-Gaussian random loadings part I: Approximation of cycle distribution in wide-banded gaussian random pro-cesses[J]. Applied Ocean Research, 2020, 101: 102294.
[4] 姚卫星. 结构疲劳寿命分析[M]. 北京: 科学出版社, 2019.
[5] Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): 159-164.
[6] Zorman A, Slavi? J, Bolte?ar M. Vibration fatigue by spectral methods-A review with open-source support evaluation of mechanical components[J]. Mechanical Systems and Signal Processing, 2023, 190: 110149.
[7] Bendat J S. Probability functions for random responses: prediction of peaks, fatigue damage, and catastrophic failures[R]. Report NASA-CR-33, 1964.
[8] Lutes L D, Larsen C E. Improved spectral method for variable amplitude fatigue prediction[J]. Journal of Struc-tural Engineering, 1990, 116(4): 1149-1164.
[9] Larsen C E, Lutes L D. Predicting the fatigue life of off-shore structures by the single-moment spectral method[J]. Probabilistic Engineering Mechanics, 1991, 6(2): 96-108.
[10] Dirlik T. Application of computers in fatigue analysis[D]. The University of Warwick, 1985.
[11] Tovo R. Cycle distribution and fatigue damage under broad-band random loading[J]. International Journal of Fatigue, 2002, 24(11): 1137-1147.
[12] Benasciutti D, Tovo R. Spectral methods for lifetime prediction under wide-band stationary random process[J]. International Journal of Fatigue, 2005, 27(8): 867-877.
[13] 郑向远, 高山, 李炜. 一种新的高斯多模态随机疲劳损伤频域分析方法[J]. 哈尔滨工业大学学报, 2020, 52(10): 85-93.
ZHENG X Y, GAO S, LI W. A new frequency-domain method for analysis of Gaussian multi-modal random fa-tigue damage[J]. Journal of Harbin Institute of Technolo-gy, 2020, 52(10): 85-93.(in Chinese)
[14] 袁奎霖, 靳宏义. 一种新的高斯双模态随机疲劳损伤分析方法[J]. 哈尔滨工业大学学报, 2023, 55(8): 135-142.
YUAN K L, JIN H Y. Development of a new frequency-domain method for fatigue damage assessment in bimod-al Gaussian random processes[J]. Journal of Harbin In-stitute of Technology, 2023, 55(8): 135-142.(in Chinese)
[15] 周敏亮, 陈忠明, 邓吉宏, 施荣明. 飞机结构振动疲劳寿命频域预估方法研究[J].飞机设计, 2017, 37(3): 25-30.
ZHOU M L, CHEN Z M,DENG J H,SHI R M. Re-search on vibration fatigue life frequency-domain estima-tion method of aircraft structure [J]. Aircraft Design, 2017, 37(3): 25-30. (in Chinese)
[16] 吴光强, 李超, 丁丰, 章蕾. 基于频域和时域法的电池包随机振动疲劳计算对比研究[J]. 湖南大学学报(自然科学版), 2024, 51(2): 208-218.
WU G Q, LI C, DING F, ZHANG L. A comparing study on battery pack random vibration fatigue calcula-tion based on frequency domain and time domain ap-proaches[J]. Journal of Hunan University (Natural Sci-ences), 2024, 51(2): 208-218.(in Chinese)
[17] Martinez-Puente E, Zarketa-Astigarraga A, Martinez-Agirre M, Zabala A, Esnaola JA, Mu?iz-Calvente M, Llavori I, Penalba M. Benchmarking of spectral methods for fatigue assessment ofmooring systems and dynamic cables in offshore renewable energy technologies[J]. Ocean Engineering, 2024, 308: 118311.
[18] 袁盛铭, 吴兴文, 赵明花, 池茂儒. 随机振动疲劳寿命评估频域法模型适用性研究[J]. 噪声与振动控制, 2023, 43(2): 28-34.
YUAN S M, WU X W, ZHAO M H, CHI M R. Re-search on applicability of frequency domain model for random vibration fatigue lifespan assessment[J]. Noise and Vibration Control, 2023, 43(2): 28-34.(in Chinese)
[19] 邓康清, 朱雯娟, 王相宇, 余小波, 郭春亮, 刘梦珂, 张峰涛, 向进, 王鹍鹏, 张琪敏. 特种结构固体火箭发动机燃烧室随机振动疲劳分析[J]. 固体火箭技术,2023, 46(2): 263-271.
DENG K Q, ZHU W J, WANG X Y, YU X B, GUO C L, LIU M K, ZHANG F T, XIANG J, WANG K P, ZHANG Q M. Fatigue analysis on chamber of a special structure SRM under random vibration[J]. Journal of Solid Rocket Technology, 2023, 46(2): 263-271.(in Chinese)
[20] 许卓, 徐鹤松, 李晖, 王相平, 张海洋, 刘洋, 孙伟, 马辉, 赵丙峰, 韩清凯, 贾璞, 周晋, 闻邦椿. 基础随机激励下纤维增强复合薄板振动疲劳寿命预报[J]. 航空动力学报,2023, 38(1): 47-54.
XU Z, XU H S, LI H, WANG X P, ZHANG H Y, LIU Y, SUN W, MA H, ZHAO B F, HAN Q K, JIA P, ZHOU J, WEN B C. Vibration fatigue life prediction of fiber reinforced composite thin plate under basic random excitation[J]. Journal of Aerospace Power, 2023, 46(1): 263-271. (in Chinese)
[21] 赵旭升, 陈果, 张旭, 钱进. 装配应力对飞机管道随机疲劳寿命的影响分析与试验验证[J]. 机械强度, 2024, 46(1): 208-215.
ZHAO X S, CHEN G, ZHANG X, QIAN J. Analysis and experimental verification of the effect of assembly stress on the random fatigue life of aircraft pipeline[J]. Journal of Mechanical Strength, 2024, 46(1): 208-215.(in Chinese)
[22] 李孔娟, 陈海波. 加筋板中频声振疲劳分析方法研究[J]. 空天技术, 2023, (2): 75-83+96.
LI K J, CHEN H B. A mid-frequency vibro-acoustic fatigue analysis method for stiffened panels[J]. Aerospace Technology, 2023, (2): 75-83+96. (in Chinese)
[23] Wang Y Y, Chen H B, Zhou H W. A fatigue life estimation algorithm based on Statistical Energy Analysis in high-frequency random processes[J]. International Journal of Fatigue, 2016, 83: 221-229.
[24] 牟彬杰, 蒋劲松, 杨堃, 付焕兵, 孟德虹, 金伟. 战斗机进气道结构声疲劳设计方法[J]. 航空学报, 2024, 45(14): 229603.
MOU B J, JIANG J S, YANG K, FU Hu B, MENG D H, JIN W. Acoustic fatigue design method for fighter in-let structure[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 229603.(in Chinese)
[25] 林家浩, 张亚辉, 赵岩. 虚拟激励法在国内外工程界的应用回顾与展望[J].应用数学和力学, 2017, 38(1): 1-32.
Lin J H, Zhang Y H, Zhao Y. The pseudo-excitation method and its industrial applications in China and abroad[J]. Applied Mathematics and Mechanics, 2017, 38(1): 1-31. (in Chinese)
[26] Braccesi C, Cianetti F, Tomassini L. An innovative modal approach for frequency domain stress recovery and fa-tigue damage evaluation[J]. International Journal of Fa-tigue, 2016, 91: 382-396.
[27] Braccesi C, Cianetti F, Tomassini L. Fast evaluation of stress state spectral moments[J]. International Journal of Mechanical Sciences, 2017, 127: 4-9.
[28] Mr?nik M, Slavi? J, Bolte?ar M. Vibration fatigue using modal decomposition[J]. Mechanical Systems and Signal Processing, 2018, 98: 548-556.
[29] Zhou Y D, Tao J Y. Theoretical and numerical investiga-tion of stress mode shapes in multi-axial random fa-tigue[J]. Mechanical Systems and Signal Processing, 2019, 127: 499-512.
[30] Der Kiureghian A. Structural response to stationary exci-tation[J]. Journal of the Engineering Mechanics Division, 1980, 106(6): 1195-1213.
[31] Der Kiureghian A, Nakamura Y. CQC modal combina-tion rule for high-frequency modes[J]. Earthquake Engi-neering and Structural Dynamics, 1993, 22(11): 943-956.
[32] Sui G H, Zhang Y H. Response spectrum method for fatigue damage assessment of mechanical systems[J]. In-ternational Journal of Fatigue, 2023, 166: 107278.
[33] Sui G H, Jin X Y, Cui H Y, Zhang Y H. Improvement and test verification of the fatigue response spectrum method[J]. Mechanical Systems and Signal Processing, 2024, 217: 111519.
[34] Sui G H, Zhang Y H. A complete SRSS format for the response spectrum method of high-cycle fatigue life as-sessment considering modal truncation error correc-tion[J]. International Journal of Fatigue, 2023, 175: 107834.
[35] Yang Y B, Sui G H, Zhang Y H. Response spectrum method for fatigue damage assessment of aero-hydraulic pipeline systems[J]. Computers and Structures, 2023, 287: 107119.
[36] Cook R D, Malkus D S, Plesha M E, Witt R J. Concepts and Applications of Finite Element Analysis (5th ed)[M]. New York: Wiley, 2002.
[37] Heredia-Zavoni E. The complete SRSS modal combination rule[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(11): 1181-1196.
[38] Heredia-Zavoni E, Santa-Cruz S, Silva-González FL. Modal response analysis of multi-support structures using a random vibration approach[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(13): 2241-2260.
[39] Preumont A, Piéfort V. Predicting random high-cycle fatigue life with finite elements[J]. Journal of Vibration and Acoustics, 1994, 116(2): 245-248.
[40] Benasciutti D, Cristofori A, Tovo R. Analogies between spectral methods and multiaxial criteria in fatigue damage evaluation[J]. Probabilistic Engineering Mechanics, 2013, 31: 39-45.
[41] Cristofori A, Benasciutti D, Tovo R. A stress invariant based spectral method to estimate fatigue life under multiaxial random loading[J]. International Journal of Fatigue, 2011, 33(7): 887-899.
[42] Braccesi C, Cianetti F, Tomassini L. Random fatigue. A new frequency domain criterion for the damage evaluation of mechanical components[J]. International Journal of Fatigue, 2015, 70: 417-427.
[43] Benasciutti D, Braccesi C, Cianetti F, Cristofori A, Tovo R. Fatigue damage assessment in wide-band uniaxial random loadings by PSD decomposition: outcomes from recent research[J]. International Journal of Fatigue, 2016, 91: 248-250.
[44] Wijker J. Miles’ Equation in Random Vibrations[M]. Cham: Springer, 2018.