飞机起落架非线性动力学稳定性研究进展

  • 聂宏 ,
  • 魏小辉 ,
  • 张明 ,
  • 印寅 ,
  • 尹乔之 ,
  • 王勇
展开
  • 1. 南京航空航天大学 机械结构力学及控制国家重点实验室
    2. 南京航空航天大学102教研室
    3. 南京航空航天大学
    4. 江苏大学

收稿日期: 2024-09-19

  修回日期: 2025-01-13

  网络出版日期: 2025-01-16

基金资助

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;江苏省自然科学基金;航空航天结构力学及控制全国重点实验室自主研究课题;教育部“春晖计划”合作科研项目

Research progress on nonlinear dynamic stability of aircraft landing gear

  • NIE Hong ,
  • WEI Xiao-Hui ,
  • ZHANG Ming ,
  • YIN Yin ,
  • YIN Qiao-Zhi ,
  • WANG Yong
Expand

Received date: 2024-09-19

  Revised date: 2025-01-13

  Online published: 2025-01-16

摘要

飞机起落架非线性动力学稳定性问题一直是飞机及起落架设计的难点问题,涉及复杂的几何非线性、物理非线性及其耦合。以摄动法为代表的传统时域计算方法虽然可以用于判定系统稳定性,但在参数影响分析和参数化快速精确设计等方面存在局限性。近年来数值延拓法被广泛应用于起落架非线性动力学稳定性分析领域,该方法能够快速、准确地分析动力学模型的稳定性随参数的变化规律,从而可有效提高飞机及起落架的设计精度、缩短设计周期。本文首先阐述了动力学稳定性、分岔分析和延拓计算的方法。然后按照起落架的功能分类,综述了起落架摆振稳定性、滑跑方向稳定性、收放机构稳定性的研究现状,重点论述了基于数值延拓法的非线性动力学稳定性分岔分析方法。最后对飞机起落架摆振稳定性、滑跑方向稳定性、收放机构稳定性研究进行了总结和展望。

本文引用格式

聂宏 , 魏小辉 , 张明 , 印寅 , 尹乔之 , 王勇 . 飞机起落架非线性动力学稳定性研究进展[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31229

Abstract

The issue of nonlinear dynamic stability in aircraft landing gear has consistently posed a significant challenge in the design of both aircraft and landing gear systems, involving complex geometric nonlinearity, physical nonlinearity, and their interactions. Although the traditional time domain analysis method represented by the perturbation method can effectively determine the stability, it exhibits limitations in analyzing parameter influences and in achieving rapid and accurate parametric design. In recent years, the numerical continuation method has been widely applied in the field of nonlinear dynamic stability analysis of the landing gear. This method enables rapid and precise analysis of the stability variation of the dynamic model with parameters, thereby significantly enhancing the design precision of aircraft and landing gear and reducing the design cycle. Firstly, this paper describes the methods of dynamic sta-bility, bifurcation analysis, and continuation calculation. Then, according to the functional classification of the landing gear, the re-search status of the shimmy stability, taxiing direction stability, and retraction mechanism stability of the landing gear are summarized. The bifurcation analysis method of nonlinear dynamic stability based on the numerical continuation method is mainly discussed. Finally, the research on the shimmy stability, taxiing direction stability, and retraction mechanism stability of aircraft landing gear is summarized and prospected.

参考文献

[1] EUROPEAN UNION AVIATION SAFETY AGENCY. Annual safety review 2024[M]. Germany:European Un-ion Aviation Safety Agency, 2024: 31-40.. [2] SHARMA S, COETZEE E B, LOWENBERG M H, et al. Numerical continuation and bifurcation analysis in air-craft design: an industrial perspective[J]. Philosophical Transactions of the Royal Society a-Mathematical Physi-cal and Engineering Sciences, 2015, 373(2051):16. [3] FENG G, JIANG B Y, JIANG Y Y. Effect of Multi-Joint Clearance Coupling on Shimmy of Nose Landing Gear[J]. Aerospace, 2023, 10(11). [4] 印寅. 起落架收放动力学及可靠性研究[D]. 南京航空航天大学, 2017. YIN Y. Dynamics and Reliability Analysis of Retraction of Landing Gear [D]. Nanjing University of Aeronautics and Astronautics, 2017(in Chinese). [5] 刘晓媛. 新舟60飞机事故及不安全事件分析[C]//航空安全与装备维修技术学术研讨会, 2014:6. LIU X Y. Analysis of MA60 aircraft accidents and un-safe incidents [C]//Aviation Safety and Equipment Maintenance Technology Symposium, 2014:6. [6] DOEDEL E J. AUTO: A program for the automatic bi-furcation analysis of autonomous systems[J]. Congr. Numer, 1981, 30(265-284):25-93. [7] COETZEE E, KRAUSKOPF B, LOWENBERG M H. The dynamical systems toolbox: Integrating AUTO into MATLAB[C]//16th US National Congress on Theoreti-cal and Applied Mechanics, State College, Pennsylvania, 2010. [8] COETZEE E. Modelling and nonlinear analysis of air-craft ground manoeuvres[D]. University of Bristol Bris-tol, UK, 2011. [9] KUZNETSOV Y A, KUZNETSOV I A, KUZNETSOV Y. Elements of applied bifurcation theory[M]. Springer-Verlag, Berlin, Heidelberg.1998. [10] DANKOWICZ H, SCHILDER F. An extended continu-ation problem for bifurcation analysis in the presence of constraints[C]//Proceedings of the ASME Internation-al Design Engineering Technical Conferences and Com-puters and Information in Engineering Conference -2009. Part A. 7th International Conference on Multibody Sys-tems, Nonlinear Dynamics & Control 2009, 2009:311-321. [11] AHSAN Z, DANKOWICZ H, LI M W, et al. Methods of continuation and their implementation in the COCO software platform with application to delay differential equations[J]. Nonlinear Dynamics, 2022, 107(4):3181-3243. [12] SCHILDER F, BUREAU E, SANTOS I F, et al. Exper-imental bifurcation analysis-Continuation for noise-contaminated zero problems[J]. Journal of Sound and Vibration, 2015, 358:251-266. [13] FORMICA G, ARENA A, LACARBONARA W, et al. Coupling FEM With Parameter Continuation for Analy-sis of Bifurcations of Periodic Responses in Nonlinear Structures[J]. Journal of Computational and Nonline-ar Dynamics, 2013, 8(2). [14] SIEBER J, KRAUSKOPF B. Control-based continua-tion of periodic orbits with a time-delayed difference scheme[J]. International Journal of Bifurcation and Cha-os, 2007, 17(8):2579-2593. [15] SIEBER J, KRAUSKOPF B. Control based bifurcation analysis for experiments[J]. Nonlinear Dynamics, 2008, 51(3):365-377. [16] BARTON D A W. Control-Based Continuation of a Hy-brid Numerical/Physical Substructured System[C]//33rd IMAC Conference and Exposition on Structural Dynam-ics, 2015:203-207. [17] BARTON D A W, SIEBER J. Systematic experimental exploration of bifurcations with noninvasive control[J]. Physical Review E, 2013, 87(5). [18] SIEBER J, KRAUSKOPF B, WAGG D, et al. Control-based continuation of unstable periodic orbits[J]. Pro-ceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference -2009. Part A. 7th Interna-tional Conference on Multibody Systems, Nonlinear Dy-namics & Control 2009, 2009:331-340. [19] RENSON L, SIEBER J, BARTON D A W, et al. Nu-merical continuation in nonlinear experiments using local Gaussian process regression[J]. Nonlinear Dynamics, 2019, 98(4):2811-2826. [20] LEE K, BARTON D, RENSON L. Reduced-order mod-elling of flutter oscillations using normal forms and sci-entific machine learning[C]//Advances in Nonlinear Dy-namics: Proceedings of the Second International Nonlin-ear Dynamics Conference (NODYCON 2021), Volume 1, 2021:49-63. [21] 苏二龙, 罗建军. 高超声速飞行器横侧向失稳非线性分岔分析 [J]. 力学学报, 2016, 48(05):1192-1201. SU E L, LUO J J. Nonlinear bifurcation analysis of lat-eral loss of stability for hypersonic vehicle [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(05):1192-1201(in Chinese). [22] 苏二龙, 罗建军, 闵昌万, 等. 高超声速飞行器纵向大攻角非线性失稳分析与控制 [J]. 航空学报, 2016, 37(S1):80-90. SU E L, LUO J J, MIN C W, et al. Analysis and control of nonlinear loss of stability for longitudinal flight dy-namics of hypersonic vehicle with high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): S80-S90(in Chinese). [23] 付军泉, 史志伟, 耿玺, 等. 基于试验分岔分析的翼身融合飞行器纵向稳定性 [J]. 航空学报, 2022, 43(1):124931. FU J Q, SHI Z W, GENG X, et al. Longitudinal stability of blended-wing-body aircraft based on experimental bi-furcation analysis[J]Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124931 (in Chinese). [24] 卢京明. 某型飞机的前轮摆振分析与计算[J]. 飞机工程, 2001 (003): 14-20. Lu J M. Analysis and calculation of front wheel shimmy of a certain type of aircraft[J]. Aircraft Engineering, 2001 (003): 14-20(in Chinese). [25] SURA N K, SURYANARAYAN S. Lateral stability of aircraft nose-wheel landing gear with closed-loop shim-my damper[J]. Journal of Aircraft, 2009, 46(2): 505-509. [26] 刘胜利, 刘小川, 崔荣耀, 等. 机体连接处局部刚度对轻型飞机起落架摆振稳定性的影响研究[J].振动工程学报,2017,30(02):249-254. LIU S L, LIU X C, CUI R Y, et al. The influence of the fuselage joint local stiffness on landing gear shimmy stabilization of the light aircraft[J]. Journal of Vibration Engineering,2017,30(2):249-254(in Chinese). [27] ERET P, KENNEDY J, BENNETT G J. Effect of noise reducing components on nose landing gear stability for a mid-size aircraft coupled with vortex shedding and free-play[J]. Journal of Sound and Vibration, 2015, 354: 91-103. [28] PADMANABHAN M A, DOWELL E H. Landing gear design/maintenance analysis for nonlinear shimmy[J], . Journal of Aircraft, 2015, 52(5):1707-1710. [29] 冯飞, 常正, 聂宏, 等.飞机柔性对前起落架摆振的影响分析[J].航空学报,2011,32(12):2227-2235. FENG F, CHANG Z, NIE H,et al. Analysis of in-fluence of aircraft flexibility on nose landing gear shim-my[J]. Acta Aeronautics et Astronautics Sinica, 2011,32(12):2227-2235. [30] RAHMANI M ,BEHDINAN K .Investigation on the effect of coulomb friction on nose landing gear shim-my[J].Journal of Vibration and Control,2019,25(2):255-272. [31] RUAN S, ZHANG M, HONG Y, et al. Influence of clearance and structural coupling parameters on shimmy stability of landing gear[J]. The Aeronautical Journal, 2023, 127(1315): 1591-1622. [32] THOTA P, KRAUSKOPF B, LOWENBERG M. Inter-action of Torsion and Lateral Bending in Aircraft Nose Landing Gear Shimmy [J]. Nonlinear Dynamics, 2008, 57(3): 455-467. [33] THOTA P, KRAUSKOPF B, LOWENBERG M H. Bifurcation analysis of aircraft nose landing gear shimmy with a dual-wheel configuration[C]//7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal. 2009. [34] HOWCROFT C, LOWENBERG M, NEILD S, et al. Effects of freeplay on dynamic stability of an aircraft main landing gear[J], 2013, 50(6):1908-1922. [35] THOTA P, KRAUSKOPF B, LOWENBERG M. Multi-parameter bifurcation study of shimmy oscillations in a dual-wheel aircraft nose landing gear[J]. Nonlinear dy-namics, 2012, 70: 1675-1688. [36] 冯广, 丁建宾, 姜义尧, 等. 轮胎刚度特性对大型民机前起落架摆振影响研究[J].航空工程进展,2023,14(02):55-64. FENG G, DlNG J, JlANG Y, et al. Research on influ-ence of tire stiffness characteristics on shimmy of large-civil aircraft nose landing gear[J]. Advances in Aeronau-tical Science and Engineering,2023,14(02):55-64(in Chinese). [37] Feng F, Nie H, Zhang M, et al. Effect of torsional damn-ing on aircraft nose landing-gear shimmy[J]. Journal of Aircraft, 2015, 52(2): 561-568. [38] RAHMANI M, BEHDINAN K. Parametric study of a novel nose landing gear shimmy damper concept[J]. Journal of Sound and Vibration, 2019, 457: 299-313. [39] WANG Y, XIANYU JIN, YIN Y. Using nonlinear feedback control to improve aircraft nose landing gear shimmy performance[J]. Meccanica, 2022, 57(9): 2395-2411. [40] RUAN S, ZHANG M, YANG S, et al. Research on the Stability and Bifurcation Characteristics of a Landing Gear Shimming Dynamics System. Aerospace 2024, 11, 104. [41] RAHMANI M, BEHDINAN K. Studying the effect of freeplay on nose landing gear shimmy using a fully non-linear model[C]//International Design Engineering Tech-nical Conferences and Computers and Information in Engineering Conference. American Society of Mechani-cal Engineers, 2018, 51838: V006T09A027. [42] HOWCROFT C, LOWENBERG M, NEILD S, et al. Shimmy of an aircraft main landing gear with geometric coupling and mechanical freeplay[J]. Journal of Compu-tational and Nonlinear Dynamics, 2015, 10(5): 051011. [43] 张严.考虑结构因素的起落架摆振稳定性分析[D].南京航空航天大学,2018. ZHANG Y. Stability analysis of landing gear shimmy considering the structural factors[D]. Nanjing University of Aeronautics and Astronautics,2018 (in Chinese). [44] 阮爽,张明,聂宏.结构间隙对起落架地面滑跑摆振特性影响分析[J].振动与冲击,2024,43(02):234-243. RUAN S, ZHANG M, NIE H. Influence of the struc-tural clearance on the shimmy characteristics of the land-ing gear during ground taxiing[J]. Journal of Vibration and Shock, 2024,43(02):234-243(in Chinese). [45] GAO X, ZHENG Y, DU X, et al. Effect of clearance position of torque link structure on nose landing gear shimmy[J]. International Journal of Non-Linear Mechan-ics, 2024, 159: 104616. [46] RAHMANI M, BEHDINAN K. Interaction of torque link freeplay and Coulomb friction nonlinearities in nose landing gear shimmy scenarios[J]. International Journal of Non-Linear Mechanics, 2020, 119: 103338. [47] RUAN S, ZHANG M, NIE H. Research and Analysis of Coulomb Friction in Landing Gear Shimmy[J]. Jour-nal of Aircraft, 2024: 1-12. [48] DU X, XU Y, LIU Q, et al. Shimmy dynamics in a dual-wheel nose landing gear with freeplay under stochastic wind disturbances[J]. Nonlinear Dynamics, 2024, 112(4): 2477-2499. [49] 冯飞. 起落架的摆振分支分析[D].南京航空航天大学,2014. FENG F. Bifurcation Analysis of Landing Gear shim-my[D]. Nanjing University of Aeronautics and Astro-nautics,2014 (in Chinese). [50] 蔡佳圻. 飞机起落架摆振动力学分析及其非线性问题研究[D]. 南京: 南京航空航天大学, 2016. CAI J Q. Dynamic analysis and nonlinear problem re-search of aircraft landing gear shimmy [D]. Nanjing University of Aeronautics and Astronautics,2016 (in Chinese). [51] CHENG L, CAO H, ZHANG L. Two-parameter bifur-cation analysis of an aircraft nose landing gear model[J]. Nonlinear Dynamics, 2021, 103: 367-381. [52] 高相国,卢翔,单泽众.考虑支柱轴向位移和纵向弯曲的双轮前起落架摆振特性分析[J/OL].振动工程学报,1-12[2024-08-29]. GAO X G,LU X,SHAN Z Z. Shimmy characteris-tics of dual?wheel nose landing gear considering the axi-al and longitudinal motions of strut[J/OL]. Journal of Vibration Engineering,1-12[2024-08-29] (in Chinese). [53] 冯飞, 罗波, 张策, 等. 轮间距与双轮共转对飞机起落架摆振的影响分析[J]. 振动与冲击, 2019, 38(6): 212-217. FENG F, LUO C, ZHANG C, et al. Effect of wheel-distance and corotating wheels on aircraft shimmy[J]. Journal of Vibration and Shock, 2019, 38(6): 212-217 (in Chinese). [54] 陈大伟. 起落架摆振的非线性分析及控制[D].南京航空航天大学,2012. CHEN D W. Nonlinear analysis and control of landing gear shimmy[D]. Nanjing University of Aeronautics and Astronautics,2012 (in Chinese). [55] Jiang Y Y, Feng G, T H H, et al. Effect of Coulomb fric-tion on shimmy of nose landing gear under time-varying load[J]. Tribology International,2023,188. [56] WANG Y, ZHANG T, YIN Y, et al. Reducing shimmy oscillation of a dual-wheel nose landing gear based on torsional nonlinear energy sink[J]. Nonlinear Dynamics, 2024, 112(6): 4027-4062. [57] 周家才,赵艳影,肖相志,等.非线性能量汇提高前起落架摆振的稳定性和抑制效果[J/OL].固体力学学报,1-15[2024-08-29]. ZHOU J C, ZHAO Y Y, XIAO X Z, et al. Nose Land-ing Gear Stability Enhancement and Shimmy Suppres-sion with a Nonlinear Energy Sink[J/OL]. Chinese Journal of Solid Mechanics, 1-15[2024-08-29] (in Chi-nese). [58] 高泽迥. 飞机地面操纵减摆系统及地面运动力学[J], 航空学报杂志社, 北京, 1997. GAO Z J. Aircraft ground control swing reduction sys-tem and ground motion mechanics[J]. Acta Aeronautica et Astronautica Sinica. 1997 (in chinese). [59] SONG L, YANG H, YAN X F, Ma C, Huang J. A study of Instability in a Miniature Flying-Wing Aircraft in High-Speed Taxi[J]. Chinese Journal of Aeronautics. 2015;28(03):749-756. [60] PLAKHTIENKO N P, SHIFRIN B M. Mechanical phenomena in ground run of an aircraft with near-critical slip angles[J]. International Applied Mechanics. 2006;42(6):714-720. [61] ABE M. A Theoretical Analysis on Vehicle Cornering Behaviors in Acceleration and in Braking[J]. Vehicle System Dynamics. 1986;15(sup1):1-14. [62] BARNES A G, YAGER T J. Simulation of Aircraft Be-haviour on and Close to the Ground[J], France: Advisory Group For Aerospace Research And Development Neuilly-Sur-Seine, 1985. [63] ABZUG M J. Directional Stability and Control During Landing Rollout[J]. Journal of Aircraft. 1999;36(3):584-590. [64] 顾宏斌. 飞机地面运行的动力学模型[J]. 航空学报. 2001;22(2):163-168. GU H B. YNAMIC MODEL OF AIRCRAFT GROUND HANDLING[J]. Acta Aeronautica et Astro-nautica Sinica. 2001, 22(2):163-168 (in chinese). [65] 朱丹丹, 贾玉红. 飞机过度/不足转向地面转弯操纵特性分析[J]. 北京航空航天大学学报. 2011;37(12):1594-1598. ZHU D D, JIA Y H. Analysis of oversteer / understeer characteristics of aircraft ground steering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12):1594-1598 (in chinese). [66] HOU Y X, GUAN Y L, JIA H G. Research on Motion Characteristics for UAV Ground Maneu-vers[C]//Proceedings of 2015 IEEE International Confer-ence on Mechatronics and Automation, Beijing, China; 2015:22-26. [67] GU H B, GAO Z J. Landing Gear Shimmy and Direc-tional Stability of Aircraft Undergoing Non-straight Taxi-ing[J]. Chinese Journal of Aeronautics. 2001;2001(02):73-77. [68] LIANG T T, YIN Q Z, WEI X H. Effects of Landing Gear Layout on the Safe Rollout Envelope of Equipped–Skid Aircraft[J]. Aerospace Science and Technology. 2022. [69] 邱东海, 马伍元, 段镇. 无人机地面操纵转弯特性分析与计算研究[J]. 飞行力学. 2015; 4(33):310-314. QIU D H, MA W Y, DUAN Z, et al. Reasearch on UAV ground handled steering characteristics analysis and cal-culation methods[J]. FLIGHT DYNAMICS. 2015, 4(33):310-314(in chinese). [70] HE X F, AI J L. Taxiing Stability Verification and Air-worthiness Certification for Amphibious Aircraft[J]. Sci-ence China(Information Sciences). 2019;62(01):61-63. [71] 徐梓尧, 王琪. 含单边非完整约束飞机滑跑的建模与仿真方法[J]. 北京航空航天大学学报. 2015;41(05):835-840. XU Z Y, WANG Q. Method for modeling and simula-tion of aircraft taxiing with unilateral and non-holonomic constraints[J]. Journal of Beijing University of Aero-nautics and Astronautics, 2015, 41(5):835-840(in Chi-nese). [72] KHAPANE P.D. Simulation of Asymmetric Landing and Typical Ground Maneuvers for Large Transport Air-craft[J]. Aerospace Science and Technology. 2003;Vol. 7:611-619. [73] 张震, 贾玉红. 无人机地面滑跑方向稳定性模糊控制研究[J]. 飞机设计. 2016;36(02):18-21. ZHANG ZHEN ,JIA Y H. Appli-cation of fuzzy control in UAV on-ground directional control system[J]. Air-craft Design, 2016, 36(2):18-21.(in chinese) [74] ZHANG M, NIE H, WEI X H, et al. Modeling and Simulation of Aircraft Anti-Skid Braking and Steering Using Co-simulation Method[J]. COMPEL - The inter-national journal for computation and mathematics in elec-trical and electronic engineering. 2009;28(6):1471-1488. [75] ANGELI G, IMAD L A. Turning Maneuver Effect on Near-Surface Airfield Pavement Responses[J]. Transpor-tation Research Record. 2019;2673:8275-283. [76] COETZEE E , KRAUSKOPF B , LOWENBERG M. Nonlinear Aircraft Ground Dynamics[C]//International Conference on Nonlinear Problems in Aviation and Aer-ospace, 2006:1-8. [77] HORIUCHI S, OKADA K, NOHTOMI S. Analysis of Accelerating and Braking Stability Using Constrained Bifurcation and Continuation Methods[J]. Vehicle Sys-tem Dynamics. 2008;46(sup1):585-597. [78] RANKIN J, COETZEE E, KRAUSKOPF B. Bifurca-tion and Stability Analysis of Aircraft Turning on the Ground[J]. Journal of Guidance, Control, and Dynamics. 2009;32(2):500-511. [79] RANKIN J, KRAUSKOPF B, LOWENBERG M, et al. Operational Parameter Study of Aircraft Dynamics on the Ground[J]. Journal of Computational and Nonlinear Dy-namics. 2010;5(2):021007-1-021007-11. [80] COETZEE E, KRAUSKOPF B, LOWENBERG M. Continuation Analysis of Aircraft Ground Loads During High-Speed Turns[J]. Journal of Aircraft. 2013;50(1):217-231. [81] COETZEE E, KRAUSKOPF B, LOWENBERG M. Application of Bifurcation Methods to the Prediction of Low-Speed Aircraft Ground Performance[J]. Journal of Aircraft. 2010;47(4):1248-1255. [82] SHARMA S, COETZEE E, LOWENBERG M, et al. Numerical Continuation and Bifurcation Analysis in Air-craft Design: an Industrial Perspective[J]. Philosophical Transactions of the Royal Society Mathematical Physical & Engineering Sciences. 2015. [83] YIN Q Z, WEI X H, NIE H, et al. Parameter Effects on High-Speed UAV Ground Directional Stability Using Bi-furcation Analysis[J]. Chinese Journal of Aeronautics. 2021(5). [84] MA Z, ZHU X, ZHOU Z. Taxiing Characteristic Analy-sis and Control for Full-Wing Solar-Powered Unmanned Aerial Vehicle[J]. Journal of Northwestern Polytechnical University. 2019;37(1)::7-12. [85] KRAWCZYK M, ZAJDEL A. Automatic Taxi Direc-tional Control System for General Aviation Aircraft[J]. Journal of KONES. 2018;25(3):299-306. [86] 贾伟, 孙哲芃, 吴玉生, 等. 基于L1方法的某型无人机滑跑纠偏控制[J]. 弹箭与制导学报. 2021;41(01):48-52. JIA W,SUN Z P,WU Y S, et al. Deviation Control of Unmanned Aerial Vehicles Based on L1 Method[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2021, 41(01):48-52 (in chinese). [87] SUN D, JIAO Z X, SUN X H,et al. Dynamic allocation algorithm for the gain of UAV nose wheel steering and differential braking based on decomposition con-trol[C]//2016 IEEE/CSAA International Conference on Aircraft Utility Systems (AUS). IEEE, 2016. [88] KHATRI A, SINHA N. Aircraft Maneuver Design Us-ing Bifurcation Analysis and Nonlinear ControlTech-niques[C]//Aiaa Aerospace Sciences Meeting Including the New Horizons Forum & AerospaceExposition. 2011. [89] ZHANG M ,LENG M ,WU X. Design and Analysis of All-electric Aircraft Nose Wheel Steering System Based on Intelligent Algorithm[C]//Science and Engineering Research Center.Proceedings of 2017 2nd International Conference on Applied Mechanics and Mechatronics Engineering(AMME 2017). Key Laboratory of Funda-mental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics & Astronautics;Aviation Key Laboratory of Science and Technology on Aero Electromechanical Sys-tem Integration, 2017:9. [90] ZHANG Y, DUAN H. A Directional Control System for UCAV Automatic Takeoff Roll[J]. Aircraft Engineering & Aerospace Technology. 2013;85(1):48-61. [91] HUANG Z, BEST M, KNOWLES J. Optimal Predictive Steering Control for Autonomous Runway Exits[J]. Ad-vances in Mechanical Engineering. 2020;12(12):558-564. [92] 杨辉 洪, 余征跃. 刚-柔耦合多体系统动力学建模与数值仿真[J]. 计算力学学报, 2003, (04):402-408. YANG H, YU Z Y. Dynamics modeling and numerical simulation for a rigid-flexible coupling multibody sys-tem[J]. Chinese Journal of Computational Mechanics, 2003, (04):402-408 (in Chinese). [93] 印寅, 聂宏, 魏小辉, 等. 多因素影响下的起落架收放系统性能分析[J]. 北京航空航天大学学报, 2015, 41(05):953-960. YIN Y, NIE H, WEI X H, et al. Retraction system per-formance analysis of landing gear with the influence of multiple factors[J]. Journal of Beijing University of Aer-onautics and Astronautics, 2015, 41(05):953-960 (in Chinese). [94] EARLES S W E, WU C L S. Motion analysis of a rigid-link mechanism with clearance at a bearing, using La-grangian mechanics and digital computa-tion[C]//Mechanisms 1972 Conference, 1973, 1973:83-89. [95] HONGXIAN W, HONG N. Performance Analysis on Retractable Landing Gear and Design of Ground Test System [J]. Transactions of Nanjing University of Aero-nautics and Astronautics, 2016, 33(06):670-677. [96] YIN Y, XU K, NIE H, et al. Dynamics Analysis of Spa-tial Landing-Gear Mechanism with Hinge Clearance and Axis Deviation[J], 2020:1-13. [97] KNOWLES J A C, KRAUSKOPF B, LOWENBERG M H. Numerical Continuation Applied to Landing Gear Mechanism Analysis[J]. Journal of Aircraft, 2011, 48(4):1254-1262. [98] YIN Y, NEILD S A, JIANG J Z, et al. Optimization of a Main Landing Gear Locking Mechanism Using Bifurca-tion Analysis[J]. Journal of Aircraft, 2017, 54(6):2126-2139. [99] KNOWLES J A C, KRAUSKOPF B, LOWENBERG M. Numerical continuation analysis of a three-dimensional aircraft main landing gear mechanism[J]. Nonlinear Dynamics, 2013, 71(1-2):331-352. [100] KNOWLES J A C, LOWENBERG M H, NEILD S A, et al. A bifurcation study to guide the design of a landing gear with a combined uplock/downlock mechanism[J]. Proceedings of the Royal Society a-Mathematical Physi-cal and Engineering Sciences, 2014, 470(2172):22. [101] KNOWLES J A C. Bifurcation Study of a Dynamic Model of a Landing-Gear Mechanism[J]. Journal of Air-craft, 2016, 53(5):1468-1477. [102] 杨易鑫, 印寅, 聂宏, 等. 基于分岔理论的起落架撑杆式锁机构设计[J]. 航空学报, 2020, 41(11):367-382. YANG Y X,YIN Y, NIE H, et al. Strut locking mech-anism design for landing gear based on bifurcation theo-ry[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):367-382 (in Chinese). [103] KNOWLES J A C, KRAUSKOPF B, COETZEE E B. Unlocking a nose landing gear in different flight condi-tions: folds, cusps and a swallowtail[J]. Nonlinear Dy-namics, 2021, 106(4):2943-2961. [104] KNOWLES J A C, KRAUSKOPF B, LOWENBERG M H, et al. Numerical Continuation Analysis of a Dual-Sidestay Main Landing Gear Mechanism[J]. Journal of Aircraft, 2014, 51(1):129-143. [105] XU K, YIN Y, YANG Y, et al. Kinematic Singularity and Bifurcation Analysis of Sidestay Landing Gear Locking Mechanisms[J]. International Journal of Aero-space Engineering, 2021, 2021:1-15. [106] XU K, YIN Y, YANG Y X, et al. Bifurcation analysis of dual-sidestay landing gear locking performance consider-ing joint clearance[J]. Chinese Journal of Aeronautics, 2022, 35(7):209-226. [107] ZHANG Z, WU S, ZHU H, et al. Analysis of the Syn-chronized Locking Dynamic Characteristics of a Dual-Sidestay Main Landing Gear Retraction Mechanism[J], 2024, 11(5):356. [108] YIN Y, YANG Y, XU K, et al. Bifurcation characteristics of emergency extension of a landing gear mechanism considering aerodynamic effect[J]. Journal of Aerospace Engineering, 2021, 34(5):04021046. [109] 徐奎. 双撑杆起落架收放动力学及锁定分岔特性研究[D].南京航空航天大学, 2021. XU K. Dynamics and Locking Bifurcation Analysis of Retraction of Dual-Sidestay Landing Gear[D]. Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). [110] BUREAU E, SCHILDER F, SANTOS I F, et al. Exper-imental bifurcation analysis of an impact oscillator—tuning a non-invasive control scheme[J], 2013, 332(22):5883-5897. [111] RENSON L, SHAW A D, BARTON D A W, et al. Ap-plication of control-based continuation to a nonlinear structure with harmonically coupled modes[J]. Mechani-cal Systems and Signal Processing, 2019, 120:449-464. [112] LI Y, YIN Y, ZHANG Z, et al. Control-Based Continua-tion Methods for Bifurcation Characteristic Study of Landing Gear Strut Locking Mechanism[C]//Advances in Automation, Mechanical and Design Engineering: SAMDE 2023. Mechanisms and Machine Science (161), 2024:177-185.
文章导航

/