高速柔性气动减速器关键技术研究进展
收稿日期: 2024-12-17
修回日期: 2025-01-04
录用日期: 2025-01-06
网络出版日期: 2025-01-10
基金资助
国家自然科学基金(12072377);湖南省自然科学基金(2022JJ30678);航天进入减速与着陆技术实验室开放基金(EDL19092309)
Review of high-speed flexible aerodynamic decelerators key technologies
Received date: 2024-12-17
Revised date: 2025-01-04
Accepted date: 2025-01-06
Online published: 2025-01-10
Supported by
National Natural Science Foundation of China(12072377);Natural Science Foundation of Hunan Province(2022JJ30678);Open Funds of Laboratory of Aerospace Entry, Descent and Landing Technology Foundation(EDL19092309)
柔性气动减速技术是航天器高速进入地外天体或再入地球大气安全着陆的关键核心技术,随着中国载人航天和深空探测等重大任务的持续推进,航天器更快的进入速度和更重的载荷对于高速柔性气动减速器的需求日益迫切。而高速柔性气动减速器的力学模型兼具强非线性和强耦合特性,且涉及研究领域极广,如需考虑钝性和多孔结构的气动特性、非线性结构动力学、可压缩湍流、结构气动热及其相互耦合等问题。因此,开展高速柔性气动减速器的基础理论和关键技术研究具有极大的难度和复杂性但意义重大。首先对高速柔性气动减速器进行分类;然后分析梳理了高速柔性气动减速技术的技术内涵,并系统地回顾和综述了其关键技术的发展历史和研究进展;最后,对高速柔性气动减速器关键技术的未来发展方向和亟需解决的关键问题进行了总结展望。
薛晓鹏 , 贾贺 , 荣伟 , 蒋伟 , 包文龙 , 王臻 , 邹天琪 , 代雨柔 , 周一苇 . 高速柔性气动减速器关键技术研究进展[J]. 航空学报, 2025 , 46(1) : 631677 -631677 . DOI: 10.7527/S1000-6893.2025.31677
Flexible aerodynamic deceleration technology is extremely key for spacecraft to safely land in extraterrestrial objects or re-enter the Earth’s atmosphere at high speeds. With the continuous advancement of major missions such as Chinese manned spaceflight and deep space exploration, the demand for high-speed flexible aerodynamic decelerator for spacecraft with faster entry speeds and heavier loads is becoming increasingly urgent. However, the mechanical model of high-speed flexible aerodynamic decelerator combines strong nonlinearity and strong coupling characteristics, and involves a wide range of research fields, such as the aerodynamic characteristics of blunt and porous structures, nonlinear structural dynamics, compressible turbulence, structural aerodynamic heat and their mutual coupling issues. Therefore, conducting research on the fundamental theory and key technologies of flexible aerodynamic decelerators is of great difficulty and complexity, but of great significance. This paper, first, classifies the high-speed flexible aerodynamic decelerators. Then, the technical content of high-speed flexible aerodynamic decelerator technology is analyzed and sorted out, and the development history and research progress of its key technologies are systematically reviewed and summarized. Finally, a summary and outlook are provided on the future development directions and key issues that urgently need to be addressed for the key technologies of high-speed flexible aerodynamic decelerators.
1 | XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences, 2021, 125: 100728. |
2 | 李爽, 江秀强. 火星进入减速器技术综述与展望[J]. 航空学报, 2015, 36(2): 422-440. |
LI S, JIANG X Q. Review and prospect of decelerator technologies for Mars entry[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 422-440 (in Chinese). | |
3 | LI S, JIANG X Q. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69: 40-57. |
4 | CRUZ J, LINGARD J. Aerodynamic decelerators for planetary exploration: past, present, and future[C]∥AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2006. |
5 | SUBRAHMANYAM P, RASKY D. Entry, descent, and landing technological barriers and crewed MARS vehicle performance analysis[J]. Progress in Aerospace Sciences, 2017, 91: 1-26. |
6 | BRAUN R D, MANNING R M. Mars exploration entry, descent, and landing challenges[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 310-323. |
7 | REYNIER P. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects[J]. Progress in Aerospace Sciences, 2014, 70: 1-27. |
8 | WITKOWSKI A. Mars Pathfinder parachute system performance[C]∥15th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1999. |
9 | KNACKE T W. Technical-historical development of parachutes and their applications since World War I[C]∥9th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1986. |
10 | 韩晋阳, 徐宏, 高峰. 超声速半流伞设计与分析[J]. 航天返回与遥感, 2013, 34(5): 20-28. |
HAN J Y, XU H, GAO F. Design and analysis of supersonic half-flow parachute[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(5): 20-28 (in Chinese). | |
11 | 韩雅慧, 杨春信, 肖华军, 等. 十字形伞的实验研究进展及展望[J]. 兵工自动化, 2013, 32(3): 3-8, 20. |
HAN Y H, YANG C X, XIAO H J, et al. Development history and expectation of cross parachute[J]. Ordnance Industry Automation, 2013, 32(3): 3-8, 20 (in Chinese). | |
12 | 卫剑征, 谭惠丰, 王伟志, 等. 充气式再入减速器研究最新进展[J]. 宇航学报, 2013, 34(7): 881-890. |
WEI J Z, TAN H F, WANG W Z, et al. New trends in inflatable re-entry aeroshell[J]. Journal of Astronautics, 2013, 34(7): 881-890 (in Chinese). | |
13 | RAVNITZKY M, PATEL S, LAWRENCE R. To fall from space: Parachutes and the space program[C]∥10th Aerodynamic Decelerator Conference. Reston: AIAA, 1989. |
14 | WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance[C]∥AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. |
15 | 黄伟, 曹旭, 张章. 充气式进入减速技术的发展[J]. 航天返回与遥感, 2019, 40(2): 14-24. |
HUANG W, CAO X, ZHANG Z. The development of inflatable entry decelerator technology[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(2): 14-24 (in Chinese). | |
16 | MIKULAS M M, BOHON H L. Development status of attached inflatable decelerators[J]. Journal of Spacecraft and Rockets, 1969, 6(6): 654-660. |
17 | SMITH B P, TANNER C L, MAHZARI M, et al. A historical review of inflatable aerodynamic decelerator technology development[C]∥2010 IEEE Aerospace Conference. Piscataway: IEEE Press, 2010: 1-18. |
18 | EWING E G B, KNACKE H W. Recovery systems design guide[M]. Ohio: Air Force Flight Dynamics Laboratory, 1978: 1. |
19 | GIERSCH L, CLARK I G, TANIMOTO R, et al. Supersonic flight test of the SIAD-R: Supersonic inflatable aerodynamic decelerator for robotic missions to Mars[C]∥23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015. |
20 | HUGHES S, CHEATWOOD F, DILLMAN R, et al. Hypersonic inflatable aerodynamic decelerator (HIAD)technology development overview[C]∥21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011. |
21 | HUGHES S, DILLMAN R, STARR B, et al. Inflatable re-entry vehicle experiment (IRVE) design overview[C]∥18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005. |
22 | DILLMAN R. Entry descent and landing workshop proceedings: Inflatable reentry vehicle experiment-3 (IRVE-3) project overview & instrumentation—Volume 1[C]∥Entry Descent and Landing Workshop. Reston: AIAA, 2015. |
23 | GILBERT C, MAZOUE F, ORTEGA G, et al. New space application opportunities based on the inflatable reentry & descent technology IRDT[C]∥AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003. |
24 | COCKRELL D J, YOUNG A D. The aerodynamics of parachutes[R]. Denmark: AGARD, 1987. |
25 | CAMPBELL J, BROWN J C Jr. Evaluation of experimental flow properties in the wake of a Viking '75 entry vehicle[C]∥4th Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1973. |
26 | COCKRELL D. Parachute recovery systems design manual[J]. The Aeronautical Journal, 1993, 97(970): 372. |
27 | MEYER R A. Wind tunnel investigation of conventional types of parachute canopies in supersonic flow[R]. Ohio: Wright Air Development Center, 1958 |
28 | WITKOWSKI A, BRUNO R. Mars exploration rover parachute decelerator system program overview[C]∥17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003 |
29 | WITKOWSKI A, KANDIS M, ADAMS D. Mars scout phoenix parachute system performance[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
30 | WITKOWSKI A, KANDIS M, KIPP D, et al. Mars InSight parachute system performance[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
31 | MAYNARD J D. Aerodynamic characteristics of parachutes at Mach numbers from 1.6 to 3[R]. Washington, D. C.: NASA, 1961. |
32 | SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. Findings from the supersonic qualification program of the Mars science laboratory parachute system[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
33 | SENGUPTA A, STELTZNER A, COMEAUX K, et al. Results from the Mars science laboratory parachute decelerator system supersonic qualification program[C]∥2008 IEEE Aerospace Conference. Piscataway: IEEE Press, 2008: 1-15. |
34 | SENGUPTA A, ROEDER J, KELSCH R, et al. Supersonic disk gap band parachute performance in the wake of a Viking-type entry vehicle from Mach 2 to 2.5[C]∥AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2008. |
35 | KARAGIOZIS K, KAMAKOTI R, CIRAK F, et al. A computational study of supersonic disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane[J]. Journal of Fluids and Structures, 2011, 27(2): 175-192. |
36 | ROBERTS B G. An experimental study of the drag of rigid models representing two parachute designs at M= 1.40 and 2.19[R]. Bedfordshire: AERADE, 1960. |
37 | CHARCZENKO N. Wind-tunnel investigation of drag and stability of parachutes at supersonic speeds[R]. Washington, D. C.: NASA, 1964. |
38 | SENGUPTA A, HALL L, WERNET M. Fluid structure interaction of parachutes in supersonic planetary entry[C]∥21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011. |
39 | SENGUPTA A, STELTZNER A, COMEAUX K, et al. Supersonic delta qualification by analysis program for the Mars science laboratory parachute decelerator system[C]∥19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007. |
40 | WERNET M, LOCKE R, WROBLEWSKI A, et al. Application of stereo PIV on a supersonic parachute model[C]∥47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
41 | XUE X P, KOYAMA H, NAKAMURA Y. Numerical simulation on supersonic aerodynamic interference for rigid and flexible parachutes[J]. Transactions of the Japan Society for Aeronautical and Space Science, 2013, 11: 99-108. |
42 | XUE X P, KOYAMA H, NAKAMURA Y. Numerical simulation of supersonic aerodynamic interaction of a parachute system[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2013, 11: 33-42. |
43 | NISHIYAMA Y. Aerodynamic characteristics of the supersonic parachute with its opening process[D]. Nagoya: Nagoya University, 2013. |
44 | XUE X P, KOYAMA H, NAKAMURA Y, et al. Effects of suspension line on flow field around a supersonic parachute[J]. Aerospace Science and Technology, 2015, 43: 63-70. |
45 | XUE X P, NISHIYAMA Y, NAKAMURA Y, et al. Parametric study on aerodynamic interaction of supersonic parachute system[J]. AIAA Journal, 2015, 53(9): 2796-2801. |
46 | XUE X P, YUSUKE N, YOSHIAKI N, et al. High-speed unsteady flows past two-body configurations[J]. Chinese Journal of Aeronautics, 2018, 31(1): 54-64. |
47 | DAHAL N, FUKIBA K, ITOU Y, et al. Pressure mode classification of the supersonic flow over a rigid parachute model with suspension lines[C]∥22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2018. |
48 | REICHENAU D E A. Aerodynamic characteristics of disk-gap-band parachutes in the wake of Viking entry forebodies at Mach numbers from 0.2 to 2.6[R]. Washington, D. C.: NASA, 1972. |
49 | MAYHUE R J, BOBBITT P J. Drag characteristics of a disk-gap-band parachute with a nominal diameter of 1.65 meters at mach numbers from 2.0 to 3.0[R]. Washington, D. C.: NASA, 1972. |
50 | STEINBERG S, SIEMERS P, SLAYMAN R. Development of the Viking parachute configuration by wind tunnel investigation[C]∥4th Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1973. |
51 | SENGUPTA A, KELSCH R, ROEDER J, et al. Supersonic performance of disk-gap-band parachutes constrained to a 0-degree trim angle[J]. Journal of Spacecraft and Rockets, 2009, 46(6): 1155-1163. |
52 | TAGUCHI M, SEMBA N, MORI K. Effects of flexibility and gas permeability of fabric to supersonic performance of flexible parachute[C]∥23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015. |
53 | TAGUCHI M, SEMBA N, OKADA M, et al. Experimental investigations on flexible parachutes in supersonic flow[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2015, 63(6): 241-247. |
54 | COUCH L M. Drag and stability characteristics of a variety of reefed and unreefed parachute configurations at mach 1.80 with an empirical correlation for supersonic mach numbers[R]. Washington, D. C.: NASA, 1975. |
55 | MAYHUE R, BOBBITT P, FAUROTE G. Supersonic and subsonic wind-tunnel tests of reefed and unreefed disk-gap-band parachutes[C]∥3rd Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1970. |
56 | DICKINSON D, SCHLEMMER J, HICKS F, et al. Balloon launched decelerator test program: Post-test test report[R]. Washington, D. C.: NASA, 1972. |
57 | 黄明星, 王文强, 李健, 等. 火星盘缝带伞超声速风洞试验结果分析[J]. 宇航学报, 2021, 42(9): 1178-1186. |
HUANG M X, WANG W Q, LI J, et al. Analysis of supersonic wind tunnel test results of Mars disk-gap-band parachute[J]. Journal of Astronautics, 2021, 42(9): 1178-1186 (in Chinese). | |
58 | CRUZ J R, WAY D, SHIDNER J, et al. Parachute models used in the Mars science laboratory entry, descent, and landing simulation[C]∥AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. |
59 | SENGUPTA A. Dynamic characteristics of a disk gap band parachute from Mach 2 to 2.5[C]∥AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. |
60 | HEINRICH H G. Aerodynamics of the supersonic guide surface parachute[J]. Journal of Aircraft, 1966, 3(2): 105-111. |
61 | LOWRY J F. Aerodynamic characteristics of various types of full scale parachutes at mach numbers from 1.8 to 3.0[R]. Washington, D. C.: NASA, 1964. |
62 | HENKE D, NEREM R. Theoretical and experimental studies of supersonic turbulent wakes and parachute performance[C]∥2nd Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1968. |
63 | PEPPER W, BUFFINGTON R, PETERSON C. Exploratory testing of supersonic ribbon parachutes in the NASA 9-ft by 7-ft wind tunnel[C]∥9th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1986. |
64 | SENGUPTA A, WERNET M, ROEDER J, et al. Supersonic testing of 0.8 m disk gap band parachutes in the wake of a 70 deg sphere cone entry vehicle[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
65 | MYERS A W. Drag and performance characteristics of flexible aerodynamic decelerators in the wakes of double-strut mounted forebodies at Mach numbers from 2 to 5[R]. Washington, D. C.: NASA, 1967. |
66 | PETERSON C W, JOHNSON D W. Reductions in parachute drag due to forebody wake effects[J]. Journal of Aircraft, 1983, 20(1): 42-49. |
67 | HINADA M, INATANI Y, NAKAJIMA T, et al. Parachute deployment experiment in transonic and supersonic wind tunnels[C]∥11th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1991. |
68 | 张宇. 火星降落伞的结构设计与初步性能试验研究[J]. 航天返回与遥感, 2011, 32(3): 16-22. |
ZHANG Y. Structure design and elementary performance tests study on Mars parachute[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(3): 16-22 (in Chinese). | |
69 | 王立武, 房冠辉, 李健, 等. 降落伞超声速低动压高空开伞试验[J]. 航天返回与遥感, 2020, 41(3): 1-9. |
WANG L W, FANG G H, LI J, et al. The experiments of parachute deployment at supersonic and low dynamic pressure condition[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(3): 1-9 (in Chinese). | |
70 | 高树义, 戈嗣诚, 梁艳. 火星盘缝带伞跨声速风洞试验研究[J]. 中国空间科学技术, 2015, 35(4): 69-75. |
GAO S Y, GE S C, LIANG Y. Research on transonic wind tunnel tests of Mars disk-gap-band parachutes[J]. Chinese Space Science and Technology, 2015, 35(4): 69-75 (in Chinese). | |
71 | 杨贤文, 郝东, 易国庆, 等. 火星探测降落伞模型高速风洞变迎角试验技术[J]. 宇航学报, 2019, 40(12): 1461-1467. |
YANG X W, HAO D, YI G Q, et al. Variable angle of attack test technique of Mars exploration parachute model in high speed wind tunnel[J]. Journal of Astronautics, 2019, 40(12): 1461-1467 (in Chinese). | |
72 | HUANG M X, WANG W Q, LI J. Analysis and verification of aerodynamic characteristics of Tianwen-1 Mars parachute[J]. Space: Science and Technology, 2022, 2022: 9805457. |
73 | BENDURA R J, WHITLOCK C H. Inflation and performance of three parachute configurations from supersonic flight tests in a low-density environment[R]. Washington, D. C.: NASA, 1969. |
74 | GALLON J, WITKOWSKI A, CLARK I G, et al. Low density supersonic decelerator parachute decelerator system[C]∥AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. |
75 | MURROW H N, MCFALL J C. Some test results from the NASA planetary entry parachute program[J]. Journal of Spacecraft and Rockets, 1969, 6(5): 621-623. |
76 | MCFALL, MURROW H N. Summary of experimental results obtained from the NASA planetary entry parachute program[C]∥Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1968. |
77 | MOOG R D, BENDURA R J, TLMMONS J D, et al. Qualification flight tests of the Viking decelerator system[J]. Journal of Spacecraft and Rockets, 1974, 11(3): 188-195. |
78 | SONNEVELDT B S, CLARK I G, O’FARRELL C. Summary of the advanced supersonic parachute inflation research experiments (ASPIRE) sounding rocket tests with a disk-gap-band parachute[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
79 | RABINOVITCH J, GRIFFIN G S, SETO W, et al. ASPIRE supersonic parachute shape reconstruction[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
80 | SAUNDERS A, UNDERWOOD J C, LINGARD J S, et al. Supersonic parachute aerodynamic testing[C]∥AIAA Aerodynamic Decelerator Systems Technology Conference 2013. Reston: AIAA, 2013. |
81 | GILLIS C. The Viking decelerator system—An overview[C]∥4th Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1973. |
82 | MOOG R D, MICHEL F C. Balloon launched Viking decelerator test program[R]. Washington, D. C.: NASA, 1973. |
83 | CLARK I, ADLER M. Summary of the second high-altitude, supersonic flight dynamics test for the LDSD project[C]∥2016 IEEE Aerospace Conference. Piscataway: IEEE Press, 2016: 1-24. |
84 | CLARK I G, MANNING R, ADLER M. Summary of the first high-altitude, supersonic flight dynamics test for the low-density supersonic decelerator project[C]∥23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015. |
85 | CLARK I G, GALLON J C, WITKOWSKI A. Parachute decelerator system performance during the low density supersonic decelerator program’s first supersonic flight dynamics test[C]∥23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015. |
86 | LINGARD J, UNDERWOOD J. The effects of low density atmospheres on the aerodynamic coefficients of parachutes[C]∥13th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1995. |
87 | MUPPIDI S, O’FARRELL C, VAN NORMAN J W, et al. ASPIRE aerodynamic models and flight performance[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
88 | NEREM R M. An approximate method for including the effect of the inviscid wake on the pressure distribution on a ballute-type decelerator[C]∥Goodyear Aerospace Corporation Engineering Procedure, 1964. |
89 | JAREMENKO I M. Wakes, their structure and influence upon aerodynamic decelerators[R]. Washington, D. C.: NASA, 1967. |
90 | JAREMENKO I M. Ballute characteristics in the 0.1 to 10 Mach number speed regime[J]. Journal of Spacecraft and Rockets, 1967, 4(8): 1058-1063. |
91 | CLARK I, CRUZ J, HUGHES M, et al. Aerodynamic and aeroelastic characteristics of a tension cone inflatable aerodynamic decelerator[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
92 | DEVEIKIS W D, SAWYER J W. Static aerodynamic characteristics, pressure distributions, and ram-air inflation of attached inflatable decelerator models at Mach 3.0[R]. Washington, D. C.: NASA, 1970. |
93 | KYRISS C L, RIE H. Theoretical investigation of entry vehicle stability in the Mars atmosphere[J]. Journal of Spacecraft and Rockets, 1967, 4(2): 272-275. |
94 | YATES L A, CHAPMAN G T. Analysis of data from ballistic range tests of PAIDAE vehicles[R]. Washington, D. C.: NASA, 2007. |
95 | DAVENPORT E E. Static longitudinal aerodynamic characteristics of some supersonic decelerator models at Mach numbers of 2.30 and 4.63[R]. Washington, D. C.: NASA, 1969. |
96 | SAWYER J W, WHITCOMB C F. Subsonic and transonic pressure distributions around a bluff afterbody in the wake of a 120 deg cone for various separation distances[R]. Washington, D. C.: NASA, 1971. |
97 | LINGARD J, DARLEY M. Simulation of parachute fluid structure interaction in supersonic flow[C]∥18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005. |
98 | LINGARD J, BARNARD S, KEARNEY P. Comparative study of the performance of parachutes at Mach 0.5 to Mach 4.35 with reference to suitability for use with the Hermes crew escape capsule[C]∥10th Aerodynamic Decelerator Conference. Reston: AIAA, 1989. |
99 | MUPPIDI S, O’FARRELL C, TANNER C, et al. Modeling and flight performance of supersonic disk-gap-band parachutes in slender body wakes[C]∥2018 Atmospheric Flight Mechanics Conference. Reston: AIAA, 2018. |
100 | XUE X P, NAKAMURA Y, MORI K, et al. Numerical investigation of effects of angle-of-attack on a parachute-like two-body system[J]. Aerospace Science and Technology, 2017, 69: 370-386. |
101 | FAN J H, HAO J A, WEN C Y, et al. Numerical investigation of supersonic flow over a parachute-like configuration including turbulent flow effects[J]. Aerospace Science and Technology, 2022, 121: 107330. |
102 | BARNHARDT M, DRAYNA T, NOMPELIS I, et al. Detached eddy simulations of the MSL parachute at supersonic conditions[C]∥19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007. |
103 | GIDZAK V, BARNHARDT M, DRAYNA T, et al. Simulation of fluid-structure interaction of the Mars science laboratory parachute[C]∥26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
104 | 龚升, 吴锤结. 探测器对超音速刚性盘-缝-带型降落伞系统的影响[J]. 力学学报, 2021, 53(3): 890-901. |
GONG S, WU C J. Influence of the capsule on the supersonic rigid disk-gap-band parachute system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 890-901 (in Chinese). | |
105 | 陈雅倩, 贾贺, 徐欣, 等. 火星探测用透气降落伞气动干扰的数值模拟研究[J]. 航天返回与遥感, 2022, 43(1): 12-25. |
CHEN Y Q, JIA H, XU X, et al. Numerical simulation of aerodynamic interaction of porosity parachutes for Mars exploration[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(1): 12-25 (in Chinese). | |
106 | 郑之初, 汪锡琦, 韩忠. 跨声速圆球阻力和流场[J]. 力学学报, 1984, 16(3): 234-240, 321-322. |
ZHENG Z C, WANG X Q, HAN Z. Sphere drags and flow fields at transonic speeds[J]. Acta Mechanica Sinica, 1984, 16(3): 234-240, 321-322 (in Chinese). | |
107 | 徐欣, 贾贺, 陈雅倩, 等. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报, 2022, 43(12): 126289. |
XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126289 (in Chinese). | |
108 | ZOU T Q, JIA H, RONG W, et al. Numerical study on the influence of fabric permeability on the inflation process and aerodynamic characteristics of disk-gap-band parachute[J]. Aerospace Science and Technology, 2024, 150: 108856. |
109 | KANDIS M, WITKOWSKI A. Comparison of Mars and earth high altitude supersonic disk-gap-band parachute system performance[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
110 | XU X, CHEN G H, ZOU T Q, et al. Numerical study on aerodynamic characteristics of Mars parachute system with different combinations of fabric permeability and structural porosity[J]. Aerospace Science and Technology, 2024, 153: 109449. |
111 | CAO Y H, NIE S, WU Z L. Numerical simulation of parachute inflation: A methodological review[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(2): 736-766. |
112 | GAO X L, ZHANG Q B, TANG Q G. Numerical modelling of Mars supersonic disk-gap-band parachute inflation[J]. Advances in Space Research, 2016, 57(11): 2259-2272. |
113 | 贾贺, 荣伟, 陈国良. 基于LS-DYNA软件的降落伞充气过程仿真研究[J]. 航天器环境工程, 2010, 27(3): 367-373, 266. |
JIA H, RONG W, CHEN G L. The simulation of parachute inflation process based on LS-DYNA software[J]. Spacecraft Environment Engineering, 2010, 27(3): 367-373, 266 (in Chinese). | |
114 | TOKUNAGA K, TAKAYANAGI H, SUZUKI T, et al. Computational study of supersonic parachute on opening dynamics[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2017, 65(5): 208-214. |
115 | YU H, PANTANO C, CIRAK F. Large-eddy simulation of flow over deformable parachutes using immersed boundary and adaptive mesh[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
116 | HUANG D Z, AVERY P, FARHAT C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
117 | BOUSTANI J, KENWAY G, CADIEUX F, et al. Fluid-structure interaction simulations of the ASPIRE SR01 supersonic parachute[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
118 | DUTTA S. ASPIRE parachute modeling and comparison to post-flight reconstruction[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
119 | 代雨柔, 李健, 薛晓鹏, 等. 超声速下盘缝带伞不同收口方式的气动特性[J]. 航空学报, 2024, 45(7): 128811. |
DAI Y R, LI J, XUE X P, et al. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811 (in Chinese). | |
120 | 杨雪. 超声速降落伞流场——结构数值仿真关键技术问题研究[D]. 南京: 南京航空航天大学, 2019. |
Yang X. Research on key issues of supersonic parachute flow field—Structure numerical simulation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
121 | XUE X P, JIA H, RONG W, et al. Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems[J]. Chinese Journal of Aeronautics, 2022, 35(4): 45-54. |
122 | 李伟杰, 武洁, 叶正寅. 再入系统的热流分析[J]. 计算机辅助工程, 2013, 22(4): 46-50. |
LI W J, WU J, YE Z Y. Heat flow analysis for reentry system[J]. Computer Aided Engineering, 2013, 22(4): 46-50 (in Chinese). | |
123 | L M, F M, PH R, et al. Some aerothermodynamic aspects of ESA entry probes[J]. Chinese Journal of Aeronautics, 2006, 19(2): 126-133. |
124 | 黄明星, 王伟志. 充气式再入柔性热防护系统热流及结构研究[J]. 航天器工程, 2016, 25(1): 52-59. |
HUANG M X, WANG W Z. A study on heat flux and structure of inflatable reentry thermal protection system[J]. Spacecraft Engineering, 2016, 25(1): 52-59 (in Chinese). | |
125 | ROGER M. Aerothermoelasticity[J]. Aero/Space Engineering, 2014, 17(10): 34-43. |
126 | CULLER A, MCNAMARA J. Fluid-thermal-structural modeling and analysis of hypersonic structures under combined loading[C]∥52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.Reston: AIAA, 2011. |
127 | CULLER A J. Coupled fluid-thermal-structural modeling and analysis of hypersonic flight vehicle structures[D]. Columbus: The Ohio State University, 2010. |
128 | SAHA S K, TOBARI J, TAKAHASHI Y, et al. Fluid-structure interaction characteristics of inflatable reentry aeroshell at subsonic speed[J]. Aerospace Science and Technology, 2023, 133: 108112. |
129 | MCNAMARA J J, FRIEDMANN P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: Past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122. |
130 | TAKIZAWA K, SPIELMAN T, MOORMAN C, et al. Fluid-structure interaction modeling of spacecraft parachutes for simulation-based design[J]. Journal of Applied Mechanics, 2012, 79(1): 010907. |
131 | ROHRSCHNEIDER R R, BRAUN R D. Static aeroelastic analysis of thin-film clamped ballute for titan aerocapture[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 785-801. |
132 | WANG Z C, YANG S C, LIU D, et al. Nonlinear aeroelastic analysis for A wrinkling aeroshell/ballute system[C]∥51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010. |
133 | SCOTT R, BARTELS R, KANDIL O. An aeroelastic analysis of a thin flexible membrane[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
134 | SHETA E, VENUGOPALAN V, TAN X, et al. Aero-structural assessment of an inflatable aerodynamic decelerator[R]. Washington, D. C.: NASA, 2010. |
135 | 张章, 吴杰, 侯安平, 等. 空间再入充气结构的流固及热固单向耦合研究[J]. 空气动力学学报, 2018, 36(6): 1061-1070. |
ZHANG Z, WU J, HOU A P, et al. One way fluid-structure and thermo-structure interaction on an inflatable space re-entry aeroshell[J]. Acta Aerodynamica Sinica, 2018, 36(6): 1061-1070 (in Chinese). | |
136 | WANG J J, YU L, YANG X, et al. Study on the performance of inflatable decelerator under hypersonic aerodynamic load[J]. IOP Conference Series: Materials Science and Engineering, 2020, 715(1): 012073. |
137 | TAKAHASHI Y, YAMADA K, ABE T, et al. Aerodynamic heating around flare-type membrane inflatable vehicle in suborbital reentry demonstration flight[J]. Journal of Spacecraft and Rockets, 2015, 52(6): 1530-1541. |
138 | TAKAHASHI Y, HA D, OSHIMA N, et al. Aerodecelerator performance of flare-type membrane inflatable vehicle in suborbital reentry[J]. Journal of Spacecraft and Rockets, 2017, 54(5): 993-1004. |
139 | HA D. Aerodynamic simulation around flare-type membrane inflatable vehicle in suborbital reentry demonstration[D]. Hokkaido: Hokkaido University, 2016. |
140 | HUCKINS E K. Snatch force during lines-first parachute deployments[J]. Journal of Spacecraft and Rockets, 1971, 8(3): 298-299. |
141 | MOOG R. Aerodynamic line bowing during parachute deployment[C]∥5th Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1975. |
142 | PURVIS J. Improved prediction of parachute line sail during lines-first deployment[C]∥8th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1984. |
143 | SHEN G H, XIA Y Q, SUN H R. A 6DOF mathematical model of parachute in Mars EDL[J]. Advances in Space Research, 2015, 55(7): 1823-1831. |
144 | 史文辉, 陈曦, 陈允浩, 等. 降落伞拉直过程的动力学仿真与试验[J]. 科学技术与工程, 2021, 21(8): 3379-3386. |
SHI W H, CHEN X, CHEN Y H, et al. Dynamic simulation and test of parachute deployment[J]. Science Technology and Engineering, 2021, 21(8): 3379-3386 (in Chinese). | |
145 | 简相辉, 金哲岩. 降落伞工作过程数值模拟研究综述[J]. 航空科学技术, 2016, 27(10): 1-7. |
JIAN X H, JIN Z Y. Review on the development of numerical simulations on parachutes[J]. Aeronautical Science & Technology, 2016, 27(10): 1-7 (in Chinese). | |
146 | 邹昕, 李明磊, 朱岱寅, 等. 火星降落伞开伞过程形态参数辨识与应用[J]. 航空学报, 2023, 44(6): 227007. |
ZOU X, LI M L, ZHU D Y, et al. Application of morphological parameter identification for Mars parachute during opening process[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 227007 (in Chinese). | |
147 | STEIN K, BENNEY R, TEZDUYAR T, et al. 3-D computation of parachute fluid-structure interactions— Performance and control[C]∥15th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1999. |
148 | BENNEY R, LEONARD J. A 3-D finite element structural parachute model[C]∥13th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1995. |
149 | HALSTROM L D, SCHWING A M. Dynamic mesh CFD simulations of orion parachute pendulum motion during atmospheric entry[R]. Washington, D. C.: NASA, 2019. |
150 | 高兴龙, 张青斌, 高庆玉, 等. 有限质量降落伞充气动力学数值模拟[J]. 国防科技大学学报, 2016, 38(4): 185-190. |
GAO X L, ZHANG Q B, GAO Q Y, et al. Numerical simulation on finite mass inflation dynamics of parachute[J]. Journal of National University of Defense Technology, 2016, 38(4): 185-190 (in Chinese). | |
151 | WHITE F M, WOLF D F. A theory of three-dimensional parachute dynamic stability[J]. Journal of Aircraft, 1968, 5(1): 86-92. |
152 | WOLF D. Dynamic stability of a nonrigid parachute and payload system[J]. Journal of Aircraft, 1971, 8(8): 603-609. |
153 | ENGDAHL R, IBRAHIM S K. Parachute dynamics and stability analysis: NASA-CR-120326[R]. Washington, D.C.: NASA, 1974. |
154 | TALAY T A. Parachute-deployment-parameter identification based on an analytical simulation of Viking BLDT AV-4[R]. Washington, D. C.: NASA, 1974. |
155 | RAISZADEH B, QUEEN E. Mars exploration rover terminal descent mission modeling and simulation[C]∥14th AAS/AIAA Space Flight Mechanics Meeting. Reston: AIAA, 2004. |
156 | PAMADI B, TARTABINI P, TONIOLO M, et al. Application of CFE/POST II for simulation of launch vehicle stage separation[C]∥AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2009. |
157 | MEDLOCK K G, LYNE J, NOCK K. Hypersonic planetary aeroassist simulation system validation[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
158 | CUTHBERT P. A software simulation of cargo drop tests[C]∥17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003. |
159 | 宋旭民, 秦子增, 程文科, 等. 航天器回收着陆仿真软件系统(ARLSSS)简介[J]. 航天返回与遥感, 2004, 25(3): 7-10. |
SONG X M, QIN Z Z, CHENG W K, et al. Aerocraft recovery and landing simulation software system[J]. Spacecraft Recovery & Remote Sensing, 2004, 25(3): 7-10 (in Chinese). | |
160 | 高兴龙. 物伞流固耦合及多体系统动力学研究[D]. 长沙: 国防科学技术大学, 2016. |
GAO X L. Research on multibody dynamics and fluid-structure interaction of parachute-body system[D]. Changsha: National University of Defense Technology,2016 (in Chinese). | |
161 | 王旭平. CBR系统在降落伞仿真建模中的应用与研究[D]. 南京: 南京航空航天大学, 2005. |
WANG X P. Application and research of CBR system in parachute simulation modeling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005 (in Chinese). | |
162 | WELLS G. A comparison of multiple techniques for the reconstruction of entry, descent, and landing trajectories and atmospheres[D]. Atlanta: Georgia Institute of Technology, 2011. |
163 | 夏刚, 程文科, 秦子增. 充气式再入飞行器柔性热防护系统的发展状况[J]. 宇航材料工艺, 2003, 33(6): 1-6. |
XIA G, CHENG W K, QIN Z Z. Development of flexible thermal protection for system inflatable re-entry vehicles[J]. Aerospace Materials & Technology, 2003, 33(6): 1-6 (in Chinese). | |
164 | MARRAFFA L, KASSING D, BAGLIONI P, et al. Inflatable re-entry technologies: Flight demonstration and future prospects[J]. ESA bulletin Bulletin ASE European Space Agency, 2000 (103): 78-85. |
165 | 李甜, 宋炳涛, 李少腾, 等. 降落伞用新型伞绳与伞带连接方式的试验研究[J]. 纺织导报, 2024(4): 61-63. |
LI T, SONG B T, LI S T, et al. Experimental study on the new connection mode of parachute cord and parachute strap[J]. China Textile Leader, 2024(4): 61-63 (in Chinese). | |
166 | BURGESS J L, FAUROTE G L. Thermal and stress analysis of an attached inflatable decelerator (AID) deployed in the Mars and Earth atmospheres[R]. Washington, D. C.: NASA, 1971. |
167 | ROBERT KENDALL T, KENDALL R R. Advanced unmanned/manned space payload inflatable decelerator/delivery systems[C]∥Space Programs and Technologies Conference. Reston: AIAA, 1995. |
168 | BOULWARE J, ANDREWS D, BLOUDEK B. Thermally protecting a reentry ballute with transient porosity[C]∥AIAA SPACE 2007 Conference & Exposition. Reston: AIAA, 2007. |
/
〈 |
|
〉 |