激光清洗C919飞机铝锂合金蒙皮涂层研究

  • 吴猛 ,
  • 李多生 ,
  • 叶寅 ,
  • 李旭勇 ,
  • 徐雪源 ,
  • 陈加伟
展开
  • 1. 南昌航空大学
    2. 南昌航空大学材料学院
    3. 江西洪都航空工业集团有限责任公司

收稿日期: 2024-10-17

  修回日期: 2025-01-06

基金资助

国家自然科学基金;江西省重点研发计划重点项目;江苏省重点研发计划(产业前瞻与关键核心技术)

Study on laser cleaning of C919 aircraft Al-Li alloy skin coating

  • WU Meng ,
  • LI Duo-Sheng ,
  • YE Yin ,
  • LI Xu-Yong ,
  • XU Xue-Yuan ,
  • CHEN Jia-Wei
Expand

Received date: 2024-10-17

  Revised date: 2025-01-06

Supported by

National Natural Science Foundation of China;Key Research and Development Program of Jiangxi Province;Key Research and Development Program of Jiangsu Province (Industrial Foresight and Key Core Technologies)

摘要

激光清洗因环境友好,灵活高效,适应性强将在航空领域具有广阔应用。本文对C919飞机蒙皮铝锂合金(2060)表面CMS-CT-203涂层采用纳秒脉冲激光进行清洗研究。分析不同扫描速度、激光功率、脉冲频率、扫描次数组合下对铝锂合金涂层的清洗行为,并以去除深度、表面粗糙度为评价指标作极差分析探究各激光工艺参数对不同评价指标的影响权重。正交优化涂层清洗的激光工艺参数,并对最佳激光工艺参数组合下清洗后的试样进行表征及力学性能分析。结果表明,影响清洗效果的权重:扫描次数>扫描速度、激光功率>脉冲频率;最佳激光工艺参数组合为900 mm/s、65 W、140 kHz、4次,激光清洗后的试样较好地保持了原试样的表面形貌,同时也发现清洗后试样表面的硬度和抗拉强度略微增加,较好地保持了基材原有力学性能。实现对铝锂合金表面涂层完全去除并不损伤基材的原力学性能。该研究可为航空表面涂层去除提供参考。

本文引用格式

吴猛 , 李多生 , 叶寅 , 李旭勇 , 徐雪源 , 陈加伟 . 激光清洗C919飞机铝锂合金蒙皮涂层研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31414

Abstract

Laser cleaning will has potential applications in the aviation field due to its environmental friendliness, flexibility, efficiency and adaptability. In this paper, the CMS-CT-203 coating on the surface of C919 aircraft skin Al-Li alloy (2060) was cleaned by nanosecond pulse laser. The cleaning behavior of Al-Li alloy coating under different combinations of scanning speed, laser power, pulse frequency and scanning times was studied respectively. The removal depth and surface roughness were used as evaluation indexes for range analysis to explore the influence weight of each laser process parameter on different evaluation indexes. The laser process parameters of coating cleaning are orthogonally optimized. The characterization and mechanical properties of the specimens after cleaning under the optimal laser process parameters were analyzed. The results show that the weight of the cleaning effect : scanning times > scanning speed, laser power > pulse frequency ; the best combination of laser process parameters is 900 mm / s, 65 W, 140 kHz, 4 times. The surface morphology of the original specimen are well maintained after laser cleaning. At the same time, it is also found that the hardness and tensile strength of the specimen surface after cleaning are slightly increased, and the original mechanical properties of AL-LI alloy matrix are well maintained. The complete removal of the surface coating of the Al-Li alloy does not damage the original mechanical properties of the substrate. This study provide a reference for the removal of aviation surface coatings.

参考文献

[1]张澐龙.铝锂合金机身壁板结构激光焊接特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 1-64. [2]Zhang Y L.Research on laser welding characteristics of aluminum-lithium alloy fuselage panel structure [D]. Haerbin: Harbin Institute of Technology, 2013: 1-64(in chinese). [3]陆文明, 季建霞, 赵宝华, 等.飞机蒙皮表面的预处理及涂装[J].上海涂料, 2016, 54(4):13-18 [4]Lu W M, Ji J X, Zhao B H, et al.Pretreatment and coating of aircraft skin surface[J].Shang hai Coatings, 2016, 54(4):13-18 [5]Zhang T, Zhang T, Yuting H E, et al.Corrosion and aging of organic aviation coatings: A review[J].Chinese Journal of Aeronautics, 2023, 36(4):1-35 [6]Zhang C, Guo C, Dai W, et al.Effects of coating porosity, thickness and residual stress on stress and fatigue behavior of micro-arc oxidation coated aero Al alloys[J].Journal of Materials Research and Technology, 2024, 31:4139-4152 [7]Monette D L.Coating removal techniques in the aerospace industry[M]. Corrosion Control in the Aerospace Industry. Woodhead Publishing, 2009: 225-247. [8]Zhang D, Xu J, Li Z, et al.Removal mechanism of blue paint on aluminum alloy substrate during surface cleaning using nanosecond pulsed laser[J]. Optics & Laser Technology, 2022, 149: 107882.[J].Optics & Laser Technology, 2022, 149:- [9]Zhu G, Wang S, Cheng W, et al.Corrosion and wear performance of aircraft skin after laser cleaning[J]. Optics & Laser Technology, 2020, 132: 106475.[J].Optics & Laser Technology, 2020, 132:- [10]Li W, Jin Y, Gu J, et al.Critical surface characteristics for coating adhesion and friction behavior of aluminum alloys after laser cleaning[J]. Journal of Materials Processing Technology, 2024: 118549.[J].Journal of Materials Processing Technology, 2024, :- [11]Wang W, Shen J, Liu W, et al.Effect of laser energy density on surface physical characteristics and corrosion resistance of 7075 aluminum alloy in laser cleaning[J]. Optics & Laser Technology, 2022, 148: 107742.[J].Optics & Laser Technology, 2022, 148:- [12]Golru S S, Attar M M, Ramezanzadeh B.Effects of different surface cleaning procedures on the superficial morphology and the adhesive strength of epoxy coating on aluminium alloy 1050[J]. Progress in Organic Coatings, 2015, 87: 52-60.[J].Progress in Organic Coatings, 2015, 87:52-60 [13]陈云鹏, 程宗辉, 蔡绪康, 等.激光清洗钛合金表面吸波涂层工艺优化研究[J].航空精密制造技术, 2024, 60(02):5-9 [14]Chen Y P, Cheng Z H, Cai X K, et al.Research on process optimization of laser cleaning TC4 titanium alloy surface absorbing coating[J].Aeronautical precision manufacturing technology, 2024, 60(02):5-9 [15]刘浩东, 戴京涛, 余争鸣, 等.飞机复合材料表面隐身涂层的激光清洗工艺优化研究[J].兵器材料科学与工程, 2023, 46(3):98-102 [16]Liu H D, Dai J T, Yu Z M, et al.Optimization of laser cleaning process for stealth coatings on aircraft composite materials[J].Ordnance Materials Science and Engineering, 2023, 46(3):98-102 [17]Ouyang J, Mativenga P, Goffin N, et al.Energy consumption and performance optimisation of laser cleaning for coating removal[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 37: 245-257.[J].CIRP Journal of Manufacturing Science and Technology, 2022, 37:245-257 [18]Hu Q, Wei X, Liang X, et al.In-process vision monitoring methods for aircraft coating laser cleaning based on deep learning[J]. Optics and Lasers in Engineering, 2023, 160: 107291.[J].Optics and Lasers in Engineering, 2023, 160:- [19]Nie J, Zhang D, Su X, et al.Laser cleaning for inorganic thermal control coatings on aluminum alloys: Microstructure evolution and mechanical properties of substrate[J]. Applied Surface Science, 2024, 659: 159939.[J].Applied Surface Science, 2024, 659:- [20]Nie J, Zhang H, Zhang D, et al.Removal mechanism of laser cleaning for inorganic thermal control coatings on aluminum alloys[J]. Applied Surface Science, 2023, 633: 157578.[J].Applied Surface Science, 2023, 633:- [21]Chen X, Zhang S, Jiang M, et al.Microstructure and mechanical properties of laser welded hot-press-formed steel with varying thicknesses of Al–Si coatings cleaned by nanosecond pulsed laser[J]. Journal of Materials Research and Technology, 2023, 22: 2576-2588.[J].Journal of Materials Research and Technology, 2023, 22:2576-2588 [22]Zhu L, Gao Q, Sun B, et al.Nanosecond laser cleaning for enhanced zinc coating quality of HSLA steel[J]. Optics & Laser Technology, 2021, 143: 107311.[J].Optics & Laser Technology, 2021, 143:- [23]贾宝申, 唐洪平, 苏春洲, 等.脉冲激光去除树脂基复合材料表面涂层[J].中国激光, 2019, 46(12):133-140 [24]Jia B S, Tang H P, Su C Z, et al.Pulsed laser to remove the surface coating of resin matrix composites[J].China Laser, 2019, 46(12):133-140 [25]Xie X, Huang Q, Long J, et al.A new monitoring method for metal rust removal states in pulsed laser derusting via acoustic emission techniques[J]. Journal of Materials Processing Technology, 2020, 275: 116321.[J].Journal of Materials Processing Technology, 2020, 275:- [26]Brand J, Wain A, Rode A V, et al.Femtosecond pulse laser cleaning of biofilm and dirt: preserving the Sydney Harbour Bridge[J]. Journal of Cultural Heritage, 2023, 60: 86-94.[J].Journal of Cultural Heritage, 2023, 60:86-94 [27]Siyuan B, Shuo Y, Hongbo L, et al.Removal mechanism of Hydroides fouling on high-strength steel in the marine environment during nanosecond pulsed laser cleaning[J]. Journal of Materials Research and Technology, 2023, 27: 2912-2921.[J].Journal of Materials Research and Technology, 2023, 27:2912-2921 [28]Bertasa M, Korenberg C.Successes and challenges in laser cleaning metal artefacts: A review[J]. Journal of Cultural Heritage, 2022, 53: 100-117.[J].Journal of Cultural Heritage, 2022, 53:100-117 [29]王凯, 李多生, 叶寅, 等.航空铝合金表面涂层无损激光清洗研究[J].红外与激光工程, 2022, 51(12):163-171 [30]Wang K, Li D S, Ye Y, et al.Nondestructive laser cleaning of aviation aluminum alloy surface coating[J].Infrared and laser engineering, 2022, 51(12):163-171 [31]Sharma S P, Vilar R.Investigating the ablation threshold and morphology of spots generated on graphite electrode by femtosecond Gaussian laser pulses[J]. Optics & Laser Technology, 2024, 179: 111330.[J].Optics & Laser Technology, 2024, 179:- [32]姜苏航, 李多生, 叶寅, 等.激光一次性去除铝合金飞机蒙皮涂层实验与数值研究[J].表面技术, 2024, 53(9):180-189 [33]Jiang S H, Li D S, Ye Y, et al.Experimental and numerical study on laser one-time removal of aluminum alloy aircraft skin coating[J].Surface technology, 2024, 53(9):180-189 [34]Zhang T, Liu T, Ban G, et al.Effect of scanning speed on laser cleaning of composite paint layer on aluminum alloy[J]. Optics & Laser Technology, 2024, 171: 110470.[J].Optics & Laser Technology, 2024, 171:- [35]国家市场监督管理总局, 国家标准化管理委员会.金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021. [36]State Administration for Market Supervision, State Standardization Administration.Tensile test of metal materials-Part 1: Room temperature test method: GB/T 228.1-2021[S]. Beijing: China Standards Publishing House, 2021(in chinese).
Options
文章导航

/