大型飞机全尺寸多段翼结冰特性计算和试验
收稿日期: 2024-11-27
修回日期: 2024-12-02
录用日期: 2024-12-24
网络出版日期: 2025-01-07
基金资助
国家自然科学基金重点基金(12132019)
Icing characteristics of full-scale multi-element configurations of large aircraft: Computation and experiment
Received date: 2024-11-27
Revised date: 2024-12-02
Accepted date: 2024-12-24
Online published: 2025-01-07
Supported by
The Key Program of National Natural Science Foundation of China(12132019)
采用数值模拟和大型结冰风洞试验相结合的方法,开展了典型大飞机全尺寸三段翼的结冰特性研究。基于结冰数值计算软件NNW-ICE发展了适合于多段翼结冰模拟的计算方法,包括液滴收集计算的高效拉格朗日算法,考虑液膜非定常流动特性的结冰相变计算方法,适合于多时间步结冰计算的结冰界面、网格重构方法。在此基础上,采用NNW-ICE进行了典型状态下三段翼结冰计算,并在中国空气动力研究与发展中心的3 m×2 m大型结冰风洞开展了该翼型的全尺寸试验,重点分析了缝翼背面的结冰特性。结果表明,除了缝翼、主翼的迎风面前缘,襟翼的下翼面有结冰,缝翼背面也会结冰。研究发现了缝翼背面冰形会表现出独特的双冰脊形态,并通过计算分析,揭示了双冰脊现象形成的原因,可为飞机增升装置、防除冰设计提供参考。
易贤 , 任靖豪 , 赖庆仁 , 刘宇 , 王强 . 大型飞机全尺寸多段翼结冰特性计算和试验[J]. 航空学报, 2025 , 46(5) : 531575 -531575 . DOI: 10.7527/S1000-6893.2024.31575
A study on ice accretion characteristics of the full-size tri-element airfoil of typical large airplane was conducted using a combined approach of numerical and experimental methods. Numerical techniques specifically developed for simulations of icing on multi-element airfoil structures were implemented on the NNW-ICE software platform. These techniques include a highly efficient Lagrangian method for droplet collection, an icing simulation method featuring the unsteady flow of water film, and a reconstruction method for calculating the evolution of volume grids and ice layers in multi-shot icing simulations. Then, the full-size tri-element airfoil was utilized in simulations using the NNW-ICE software, as well as in experimental tests conducted in the 3 m × 2 m large-scale icing wind tunnel at the Chinese Aerodynamics Research and Development Center. A detailed analysis was performed on the icing characteristics of the back of the slat wing. The results indicate that ice can unexpectedly accumulate on the lower side of the flap wing and the back of the slat wing, in addition to the accumulation observed on the windward leading edge of both the slat wing and the main wing. This study revealed for the first time that the ice on the back of the slat wing exhibits a unique double-ridge ice shape, and the formation mechanism of the ice shape was interpreted through numerical analysis. The results and findings can provide valuable references for the design of high-lift and anti-/de-icing devices in the aircraft.
1 | CAO Y H, TAN W Y, WU Z L. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385. |
2 | VAN DAM C P. The aerodynamic design of multi-element high-lift systems for transport airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2): 101-144. |
3 | TONG X L, LUKE E. Eulerian simulations of icing collection efficiency using a singularity diffusion model[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
4 | TONG X, THOMPSON D, ARNOLDUS Q, et al. Three-dimensional surface evolution and mesh deformation for aircraft icing applications[J]. Journal of Aircraft, 2016, 54(3): 1047-1063. |
5 | DAI J Z, LI H R, ZHANG Y F, et al. Optimization of multi-element airfoil settings considering ice accretion effect[J]. Chinese Journal of Aeronautics, 2023, 36(2): 41-57. |
6 | BIDWELL C S. Icing analysis of a swept NACA 0012 wing using LEWICE3D version 3.48[C]∥6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014. |
7 | CAPIZZANO F, CATALANO P, CAROZZA A, et al. CIRA contribution to the first AIAA ice prediction workshop?[C]?∥AIAA Aviation 2022 Forum. Reston: AIAA, 2022. |
8 | WANG Q, CHEN N L, WANG Y B, et al. Scallop ice shape characteristics of swept wing based on large-scale icing wind tunnel experiment?[J]. Chinese Journal of Aeronautics, 2023, 36(12): 214-230. |
9 | POTAPCZUK M G, BERKOWITZ B M. Experimental investigation of multielement airfoil ice accretion andresulting performance degradation[J]. Journal of Aircraft, 1990, 27(8): 679-691. |
10 | BERKOWITZ B, POTAPCZUK M, NAMDAR B, et al. Experimental ice shape and performance characteristics for a multi-element airfoil in the NASA Lewis Icing Research Tunnel[R]. Brook Park: Sverdrup Technology, Inc., 1991. |
11 | SHIN J, WILCOX P A, CHIN V, et al. Icing test results on an advanced two-dimensional high-lift multi-element airfoil[R]. Washington, D. C.: NASA, 1994. |
12 | SANG W M, LI F W, SHI Y Y. Icing effect study for wing/body and high-lift wing configurations?[C]?∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
13 | 任靖豪, 王强, 陈宁立, 等. 多段翼构型结冰计算方法及结冰影响分析[J]. 航空学报, 2024, 45(14): 129328. |
REN J H, WANG Q, CHEN N L, et al. Numerical simulation and aerodynamic performance effects of multi-element airfoil ice accretion[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 129328 (in Chinese). | |
14 | CAO Y H, ZHONG G, MA C. Numerical simulation of ice accretion prediction on multiple element airfoil[J]. Science China Technological Sciences, 2011, 54(9): 2296-2304. |
15 | PRINCE RAJ L, LEE J W, MYONG R S. Ice accretion and aerodynamic effects on a multi-element airfoil under SLD icing conditions[J]. Aerospace Science and Technology, 2019, 85: 320-333. |
16 | KHODADOUST A, SHIN J. Effect of in-flight ice accretion on the performance of a multi-element airfoil[C]?∥SAE/AHS International Icing Symposium. Fairfax: The American Helicopter Society, Inc, 1995. |
17 | XIAO M C, ZHANG Y F, ZHOU F. Numerical investigation of the unsteady flow past an iced multi-element airfoil[J]. AIAA Journal, 2020, 58(9): 3848-3862. |
18 | 张恒, 李杰, 龚志斌. 多段翼型缝翼前缘结冰大迎角分离流动数值模拟[J]. 航空学报, 2017, 38(2): 520746. |
ZHANG H, LI J, GONG Z B. Numerical simulation of separated flow around a multi-element airfoil at high angle of attack with iced slat[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520746 (in Chinese). | |
19 | 陈宁立, 易贤, 王强, 等. NNW-ICE软件的三维结冰模型及精度验证[J]. 航空学报, 2024, 45(12): 129188. |
CHEN N L, YI X, WANG Q, et al. Three-dimensional model for ice accretion in NNW-ICE software and validation of its precision[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 129188 (in Chinese). | |
20 | 任靖豪, 王强, 刘宇, 等. 大型商用运输机机翼增升构型水滴撞击特性计算[J]. 空气动力学学报, 2021, 39(1): 52-58, 72. |
REN J H, WANG Q, LIU Y, et al. Numerical simulation of droplet impingement characteristics on a high-lift configuration of a large commercial transport aircraft[J]. Acta Aerodynamica Sinica, 2021, 39(1): 52-58, 72 (in Chinese). | |
21 | SHEN X B, ZHAO W Z, QI Z C, et al. Analysis of numerical methods for droplet impingement characteristics under aircraft icing conditions[J]. Aerospace, 2022, 9(8): 416. |
22 | WANG Q, XIAO J P, ZHANG T T, et al. A new wind turbine icing computational model based on Free Wake Lifting Line Model and Finite Area Method[J]. Renewable Energy, 2020, 146: 342-358. |
23 | BAKER J L, BARKER T, GRAY J M N T. A two-dimensional depth-averaged-rheology for dense granular avalanches[J]. Journal of Fluid Mechanics, 2016, 787: 367-395. |
24 | MEREDITH K V, DE VRIES J, XIN Y. A numerical model for partially-wetted flow of thin liquid films[M]?∥WIT Transactions on Engineering Sciences, Vol 70. Ashurst: WIT Press, 2011. |
25 | 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007. |
YI X. Study on similarity criterion between numerical calculation and icing test of aircraft icing[D]. Mianyang: China Aerodynamics Research and Development Center, 2007 (in Chinese). | |
26 | LO S H. Dynamic grid for mesh generation by the advancing front method[J]. Computers & Structures, 2013, 123: 15-27. |
27 | PAPADAKIS M, HUNG K E, VU G T, et al. Experimental investigation of water droplet impingement on airfoils, finite wings, and an S-duct engine inlet[R]. Washington, D. C.: NASA, 2002. |
28 | PETROSINO F, MINGIONE G, CAROZZA A, et al. Ice accretion model on multi-element airfoil[J]. Journal of Aircraft, 2011, 48(6): 1913-1920. |
29 | YU C X, KE P, YU G F, et al. Investigation of water impingement on a multi-element high-lift airfoil by Lagrangian and Eulerian approach?[J]. Propulsion and Power Research, 2015, 4(3): 161-168. |
30 | 刘森云, 王桥, 易贤, 等. 3 m×2 m结冰风洞试验技术新进展(2020—2022年)[J]. 空气动力学学报, 2023, 41(1): 57-65. |
LIU S Y, WANG Q, YI X, et al. New progress of 3 m×2 m icing wind tunnel test technology from 2020 to 2022[J]. Acta Aerodynamica Sinica, 2023, 41(1): 57-65 (in Chinese). | |
31 | AC-9C Aircraft Icing Technology Committee. Calibration and acceptance of icing wind tunnels: SAE ARP 5905-2003 [S]. Warrendale: SAE International, 2003. |
/
〈 |
|
〉 |