[1] Belcastro C M, Foster J V, Shah G H, et al. Aircraft loss of control problem analysis and research toward a holistic solution[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(4): 733-775.
[2] Rohith G. An investigation into aircraft loss of control and recovery solutions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(12): 4509-4522.
[3] Lu Z, Hong H, Gerdts M, et al. Flight Enve-lope Prediction via Optimal Control-Based Reachability Analysis[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(1): 185-195.
[4] Krzysiak A. Wind tunnel tests of damage to the Tu-154M aircraft wing[J]. Journal of Aero-space Engineering, 2019, 32(6):04019083.
[5] Nabi H N, Lombaerts T, Zhang Y, et al. Effects of structural failure on the safe flight envelope of aircraft[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(6): 1257-1275.
[6] 钟友武, 倪少波, 杨凌宇, 等 . 结构受损飞机动力学模型与飞行控制方法[J]. 北京航空航天大学学报, 2013, 39(2): 154-158.
Zhong Youwu, Ni Shaobo, Yang Lingyu, et al. Dynamic model and flight control method for structure damaged aircraft[J]. Journal of Beijing University of Aeronautics and Astro-nautics, 2013, 39(2): 154-158. (in Chinese)
[7] Ogunwa T T, Abdullah E J. Flight dynamics and control modelling of damaged asymmetric aircraft[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2016, 152(1): 012022.
[8] Jourdan D, Piedmonte M, Gavrilets V, et al. Enhancing UAV survivability through damage tolerant control[C]. AIAA Guidance, Naviga-tion, and Control Conference. 2013.
[9] Zhang J, Yang X, Yang L. Virtual-command-based model reference adaptive control for ab-rupt structurally damaged aircraft[J]. Aero-space Science and Technology, 2018, 78: 452-460.
[10] Y. Li, X. Liu, Q. He, R, et al. L1 Adaptive Structure-Based Nonlinear Dynamic Inversion Control for Aircraft with Center of Gravity Variations[J]. Journal of Intelligent and Robot-ic Systems: Theory and Applications, 2022 106(1).
[11] Y. Li, X. Liu, R. Ming, et al. Improved model reference-based adaptive nonlinear dynamic inversion for fault-tolerant flight control[J]. International Journal of Robust and Nonlinear Control, 2023 33(17) 10328–10359.
[12] Z. Zuo, S. Mallikarjunan, L1 Adaptive Back-stepping for Robust Trajectory Tracking of UAVs[J]. IEEE Transactions on Industrial Electronics, 2017 64(4) 2944–2954.
[13] Park H, Kim Y. L1 adaptive backstepping con-trol of aircraft under actuator failures[C]//Proc. Eur. Conf. Aeronaut. Space Sci. 2019: 1-14.
[14] Asadi D, Bagherzadeh S A. Nonlinear adaptive sliding mode tracking control of an airplane with wing damage[J]. Proceedings of the Insti-tution of Mechanical Engineers, Part G: Jour-nal of Aerospace Engineering, 2018, 232(8): 1405-1420.
[15] Asadi D, Ahmadi K. Nonlinear robust adaptive control of an airplane with structural dam-age[J]. Proceedings of the Institution of Me-chanical Engineers, Part G: Journal of Aero-space Engineering, 2020, 234(14): 2076-2088.
[16] Pettersson A, ?str?m K J, Robertsson A, et al. Analysis of linear L1 adaptive control architec-tures for aerospace applications[C]//2012 IEEE 51st IEEE conference on decision and control (CDC). IEEE, 2012: 1136-1141.
[17] Li Y, Liu X, Lu P, et al. Angular acceleration estimation-based incremental nonlinear dynam-ic inversion for robust flight control[J]. Con-trol Engineering Practice, 2021, 117: 104938.
[18] Smeur E J J, Chu Q, De Croon G C H E. Adaptive incremental nonlinear dynamic inver-sion for attitude control of micro air vehi-cles[J]. Journal of Guidance, Control, and Dy-namics, 2016, 39(3): 450-461.
[19] Li Y, Liu X, Ming R, et al. A cascaded nonlin-ear fault-tolerant control for fixed-wing air-craft with wing asymmetric damage[J]. ISA transactions, 2023, 136: 503-524.
[20] Wang Y C, Chen W S, Zhang S X, et al. Command-filtered incremental backstepping controller for small unmanned aerial vehicles [J]. Journal of Guidance, Control, and Dynamics, 2018, 41(4): 954-967.
[21] Jeon B J, Seo M G, Shin H S, et al. Under-standings of classical and incremental back-stepping controllers with model uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(4): 2628-2641.
[22] Liu J, Sun L, Tan W, et al. Finite time observer based incremental nonlinear fault-tolerant flight control[J]. Aerospace Science and Technology, 2020, 104: 105986.
[23] Huang D, Huang T, Qin N, et al. Finite-time control for a UAV system based on finite-time disturbance observer[J]. Aerospace Science and Technology, 2022, 129: 107825.
[24] Cordeiro R A, Azinheira J R, Moutinho A. Robustness of incremental backstepping flight controllers: The boeing 747 case study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3492-3505.
[25] Wang X, Kampen E J, Chu Q, et al. Incremental sliding-mode fault-tolerant flight control[J]. Journal of guidance, control, and dynamics, 2019, 42(2): 244-259.
[26] Liu J, Shan J, Wang J, et al. Incremental sliding-mode control and allocation for morphing-wing aircraft fast manoeuvring[J]. Aerospace Science and Technology, 2022, 131: 107959.
[27] Sun J, Yi J, Pu Z, et al. Fixed-time sliding mode disturbance observer-based nonsmooth backstepping control for hypersonic vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50(11): 4377-4386.
[28] Wang X, Guo J, Tang S, et al. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle[J]. ISA transactions, 2019, 88: 233-245.
[29] Song Y, Ye H, Lewis F L. Prescribed-time control and its latest developments[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(7): 4102-4116.
[30] 吴慈航, 闫建国, 钱先云, 郭一鸣, 屈耀红. 受油机指定时间姿态稳定控制[J]. 航空学报, 2022, 43(2): 324996.
WU Cihang, YAN Jianguo, QIAN Xianyun, GUO Yiming, QU Yaohong. Predefined-time attitude stabilization control of receiver air-craft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 324996. (in Chinese)
[31] Yu Li, Chih-yung Wen, XiaoXiong Liu, et.al. Prescribed-Time Fault-Tolerant Flight Control for Aircraft Subject to Structural Damage[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024.
[32] 徐世昊, 关英姿, 浦甲伦, 韦常柱. VTHL运载器再入返回预设时间滑模控制[J]. 航空学报, 2023, 44(7): 326857.
Shihao XU, Yingzi GUAN, Jialun PU, Chang-zhu WEI. Predefined-time sliding mode control for VTHL launch vehicle in reentry phase[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 326857. (in Chinese)
[33] Chen H, Wang P, Tang G. Prescribed-time control for hypersonic morphing vehicles with state error constraints and uncertainties[J]. Aerospace Science and Technology, 2023, 142: 108671.