翼面损伤飞机预设时间增量反步容错控制

  • 黄山 ,
  • 史静平 ,
  • 朱奇 ,
  • 吕永玺 ,
  • 屈晓波
展开
  • 西北工业大学

收稿日期: 2024-11-06

  修回日期: 2025-01-03

  网络出版日期: 2025-01-07

基金资助

国家自然科学基金;国家自然科学基金;陕西省自然科学基金;航空科学基金

Prescribed-time incremental backstepping fault-tolerant control for wing-damaged aircraft

  • HUANG Shan ,
  • SHI Jing-Ping ,
  • ZHU Qi ,
  • ZHU Qi Yong-Xi ,
  • QU Xiao-Bo
Expand

Received date: 2024-11-06

  Revised date: 2025-01-03

  Online published: 2025-01-07

摘要

针对飞机发生翼面损伤故障后快速稳定姿态的需求,本文着重考虑外部干扰和模型不确定性的影响,提出了一种预设时间增量式反步容错控制策略。首先,基于风洞试验数据,分析了飞机发生损伤故障后的气动特性变化,建立了考虑重心变化的姿态角和角速率动力学方程;其次,引入了预设时间滤波器,可以有效避免反步法中的微分爆炸问题,并设计了预设时间增量式反步姿态控制器,实现对姿态角的快速稳定和精确控制;在此基础上,考虑增量式反步法设计过程中忽略的高阶项以及存在的外部扰动和模型不确定性,提出了一种预设时间扰动观测器对其进行准确估计和快速补偿,进一步提高了姿态控制器的抗干扰能力。通过严格的李雅普诺夫稳定性证明,所设计的控制器可以在用户预设的时间内实现对受损飞机姿态角的稳定控制,不受系统初始状态和控制器参数的影响,从而简化了针对收敛时间的调参过程。最后,数字仿真和硬件在环试验验证了所提方法的有效性。

本文引用格式

黄山 , 史静平 , 朱奇 , 吕永玺 , 屈晓波 . 翼面损伤飞机预设时间增量反步容错控制[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31503

Abstract

Considering the influence of external interference and model uncertainty, a prescribed-time increment backstepping fault-tolerant control method for quickly recovering the attitude angle of the aircraft when suffering the wing damage fault is proposed. First, based on the wind tunnel test data, the aerodynamic characteristics of the aircraft after suffering wing-damage fault are analyzed, and the attitude angle and angular rate dynamics equations considering the change of the center of gravity were established; Second, a prescribed-time based filter is introduced, which can effectively avoid the differential explosion problem in the backstepping method. Then the prescribed-time incremental backstepping attitude controller is designed to achieve the rapid stabilization and precise control of the aircraft's attitude angle; On this basis, considering the higher-order infinitesimal terms ignored during the incremental backstepping design as well as the external perturbations and model uncertainties existing in the system, a preset time-perturbation observer is proposed to accurately estimate and quickly compensate for them, which further improves the fault-tolerance of the proposed attitude controller. It is proved by strict Lyapunov stability that the proposed controller can achieve stable control of the attitude angle within a user-defined time, independent of the initial state of the system and the parameters of the proposed controller, which simplifies the process of adjusting the parameters against the convergence time. Finally, numerical simulations verify the effectiveness of the proposed method.

参考文献

[1] Belcastro C M, Foster J V, Shah G H, et al. Aircraft loss of control problem analysis and research toward a holistic solution[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(4): 733-775.
[2] Rohith G. An investigation into aircraft loss of control and recovery solutions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(12): 4509-4522.
[3] Lu Z, Hong H, Gerdts M, et al. Flight Enve-lope Prediction via Optimal Control-Based Reachability Analysis[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(1): 185-195.
[4] Krzysiak A. Wind tunnel tests of damage to the Tu-154M aircraft wing[J]. Journal of Aero-space Engineering, 2019, 32(6):04019083.
[5] Nabi H N, Lombaerts T, Zhang Y, et al. Effects of structural failure on the safe flight envelope of aircraft[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(6): 1257-1275.
[6] 钟友武, 倪少波, 杨凌宇, 等 . 结构受损飞机动力学模型与飞行控制方法[J]. 北京航空航天大学学报, 2013, 39(2): 154-158.
Zhong Youwu, Ni Shaobo, Yang Lingyu, et al. Dynamic model and flight control method for structure damaged aircraft[J]. Journal of Beijing University of Aeronautics and Astro-nautics, 2013, 39(2): 154-158. (in Chinese)
[7] Ogunwa T T, Abdullah E J. Flight dynamics and control modelling of damaged asymmetric aircraft[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2016, 152(1): 012022.
[8] Jourdan D, Piedmonte M, Gavrilets V, et al. Enhancing UAV survivability through damage tolerant control[C]. AIAA Guidance, Naviga-tion, and Control Conference. 2013.
[9] Zhang J, Yang X, Yang L. Virtual-command-based model reference adaptive control for ab-rupt structurally damaged aircraft[J]. Aero-space Science and Technology, 2018, 78: 452-460.
[10] Y. Li, X. Liu, Q. He, R, et al. L1 Adaptive Structure-Based Nonlinear Dynamic Inversion Control for Aircraft with Center of Gravity Variations[J]. Journal of Intelligent and Robot-ic Systems: Theory and Applications, 2022 106(1).
[11] Y. Li, X. Liu, R. Ming, et al. Improved model reference-based adaptive nonlinear dynamic inversion for fault-tolerant flight control[J]. International Journal of Robust and Nonlinear Control, 2023 33(17) 10328–10359.
[12] Z. Zuo, S. Mallikarjunan, L1 Adaptive Back-stepping for Robust Trajectory Tracking of UAVs[J]. IEEE Transactions on Industrial Electronics, 2017 64(4) 2944–2954.
[13] Park H, Kim Y. L1 adaptive backstepping con-trol of aircraft under actuator failures[C]//Proc. Eur. Conf. Aeronaut. Space Sci. 2019: 1-14.
[14] Asadi D, Bagherzadeh S A. Nonlinear adaptive sliding mode tracking control of an airplane with wing damage[J]. Proceedings of the Insti-tution of Mechanical Engineers, Part G: Jour-nal of Aerospace Engineering, 2018, 232(8): 1405-1420.
[15] Asadi D, Ahmadi K. Nonlinear robust adaptive control of an airplane with structural dam-age[J]. Proceedings of the Institution of Me-chanical Engineers, Part G: Journal of Aero-space Engineering, 2020, 234(14): 2076-2088.
[16] Pettersson A, ?str?m K J, Robertsson A, et al. Analysis of linear L1 adaptive control architec-tures for aerospace applications[C]//2012 IEEE 51st IEEE conference on decision and control (CDC). IEEE, 2012: 1136-1141.
[17] Li Y, Liu X, Lu P, et al. Angular acceleration estimation-based incremental nonlinear dynam-ic inversion for robust flight control[J]. Con-trol Engineering Practice, 2021, 117: 104938.
[18] Smeur E J J, Chu Q, De Croon G C H E. Adaptive incremental nonlinear dynamic inver-sion for attitude control of micro air vehi-cles[J]. Journal of Guidance, Control, and Dy-namics, 2016, 39(3): 450-461.
[19] Li Y, Liu X, Ming R, et al. A cascaded nonlin-ear fault-tolerant control for fixed-wing air-craft with wing asymmetric damage[J]. ISA transactions, 2023, 136: 503-524.
[20] Wang Y C, Chen W S, Zhang S X, et al. Command-filtered incremental backstepping controller for small unmanned aerial vehicles [J]. Journal of Guidance, Control, and Dynamics, 2018, 41(4): 954-967.
[21] Jeon B J, Seo M G, Shin H S, et al. Under-standings of classical and incremental back-stepping controllers with model uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(4): 2628-2641.
[22] Liu J, Sun L, Tan W, et al. Finite time observer based incremental nonlinear fault-tolerant flight control[J]. Aerospace Science and Technology, 2020, 104: 105986.
[23] Huang D, Huang T, Qin N, et al. Finite-time control for a UAV system based on finite-time disturbance observer[J]. Aerospace Science and Technology, 2022, 129: 107825.
[24] Cordeiro R A, Azinheira J R, Moutinho A. Robustness of incremental backstepping flight controllers: The boeing 747 case study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3492-3505.
[25] Wang X, Kampen E J, Chu Q, et al. Incremental sliding-mode fault-tolerant flight control[J]. Journal of guidance, control, and dynamics, 2019, 42(2): 244-259.
[26] Liu J, Shan J, Wang J, et al. Incremental sliding-mode control and allocation for morphing-wing aircraft fast manoeuvring[J]. Aerospace Science and Technology, 2022, 131: 107959.
[27] Sun J, Yi J, Pu Z, et al. Fixed-time sliding mode disturbance observer-based nonsmooth backstepping control for hypersonic vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50(11): 4377-4386.
[28] Wang X, Guo J, Tang S, et al. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle[J]. ISA transactions, 2019, 88: 233-245.
[29] Song Y, Ye H, Lewis F L. Prescribed-time control and its latest developments[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(7): 4102-4116.
[30] 吴慈航, 闫建国, 钱先云, 郭一鸣, 屈耀红. 受油机指定时间姿态稳定控制[J]. 航空学报, 2022, 43(2): 324996.
WU Cihang, YAN Jianguo, QIAN Xianyun, GUO Yiming, QU Yaohong. Predefined-time attitude stabilization control of receiver air-craft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 324996. (in Chinese)
[31] Yu Li, Chih-yung Wen, XiaoXiong Liu, et.al. Prescribed-Time Fault-Tolerant Flight Control for Aircraft Subject to Structural Damage[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024.
[32] 徐世昊, 关英姿, 浦甲伦, 韦常柱. VTHL运载器再入返回预设时间滑模控制[J]. 航空学报, 2023, 44(7): 326857.
Shihao XU, Yingzi GUAN, Jialun PU, Chang-zhu WEI. Predefined-time sliding mode control for VTHL launch vehicle in reentry phase[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 326857. (in Chinese)
[33] Chen H, Wang P, Tang G. Prescribed-time control for hypersonic morphing vehicles with state error constraints and uncertainties[J]. Aerospace Science and Technology, 2023, 142: 108671.
文章导航

/