推动航天运输系统持续创新的控制技术与挑战
收稿日期: 2024-10-28
修回日期: 2024-11-19
录用日期: 2024-12-25
网络出版日期: 2025-01-07
基金资助
国家自然科学基金(52232014)
Promoting continuous innovation in space transportation systems: Control technologies and challenges
Received date: 2024-10-28
Revised date: 2024-11-19
Accepted date: 2024-12-25
Online published: 2025-01-07
Supported by
National Natural Science Foundation of China(52232104)
航天运输系统已支撑中国完成了载人航天和探月工程等多项航天重大工程任务,在未来高密度发射和航班化需求愈发强烈的大背景下,对运载火箭的研制效率、适应能力、综合性能等方面提出了更高的要求。控制技术能够在这一发展进程中发挥重要作用,并且从理论方法层面持续创新控制技术,相较于其他技术途径是十分经济高效的解决方案。从3个方面归纳了航天运输系统控制技术面临的前沿难题,包括制导与轨迹规划一体化设计、全域不确定下的强适应控制、以及面向低温流体传输的主动流型控制等。针对前2项技术,讨论了其内涵、必要性、在长征火箭中的研究应用现状以及未来的发展方向;针对第3项技术,提出了基于多学科交叉解决方案下自主控制的技术路线。提出的这些挑战由于没有好的解决方案而曾一度被忽视,限制了火箭性能的进一步提升;通过技术的突破,将有望推动航天运输系统的发展跃上新台阶。
宋征宇 . 推动航天运输系统持续创新的控制技术与挑战[J]. 航空学报, 2025 , 46(6) : 531446 -531446 . DOI: 10.7527/S1000-6893.2024.31446
Space transportation systems have supported China in completing numerous major space engineering projects, including manned spaceflight and lunar exploration missions. Facing the intense demands for future launches and the necessity of scheduled space transportation, there is a growing need for launch vehicles with higher development efficiency, greater adaptability, and improved comprehensive performance. Control technologies can play a significant role in this development process, and continuously innovating at the theoretical method level is a very cost-effective solution compared to other technical approaches. The paper highlights three key challenges in space transportation system control technology: the integrated design of guidance and trajectory planning, strong adaptive control in the face of global uncertainty, and active flow pattern control in cryogenic fluid transmission. For the first two technologies, their conceptual connotations, necessity, research and application status in the Long March launch vehicles, and future prospects are discussed. For the third technology, a technical roadmap for autonomous control based on multidisciplinary crossover solutions is proposed. These challenges have long been neglected due to the lack of good solutions, limiting the further improvement of launch vehicle performance. However, with these technological breakthroughs, we anticipate a significant advancement in space transportation systems.
1 | 姜杰. 长征三号甲系列运载火箭高适应性发展: 从总体与导航制导控制的视角[J]. 宇航总体技术, 2023, 7(2): 23-26. |
JIANG J. High adaptability development of LM-3A series launch vehicles: From the aspects of vehicle system and its guidance & navigation control[J]. Astronautical Systems Engineering Technology, 2023, 7(2): 23-26 (in Chinese). | |
2 | 吕新广, 宋征宇. 载人运载火箭迭代制导方法应用研究[J]. 载人航天, 2009, 15(1): 9-14. |
LU X G, SONG Z Y. Study of the iterative guidance engineering application to manned launch vehicle?[J]. Manned Spaceflight, 2009, 15(1): 9-14 (in Chinese). | |
3 | 孙艳秋, 吴庆军, 张硕, 等. 面向零窗口发射的全冗余一体化测发控系统[J]. 导弹与航天运载技术, 2022(1): 53-58. |
SUN Y Q, WU Q J, ZHANG S, et al. Integrated measurement control and launch system with full redundancy for zero-window launching?[J]. Missiles and Space Vehicles, 2022(1): 53-58 (in Chinese). | |
4 | 李学锋, 尚腾, 苏磊, 等. 新一代大型运载火箭长征五号控制技术[J]. 导弹与航天运载技术, 2021(5): 58-65. |
LI X F, SHANG T, SU L, et al. Control technology of new generation large launch vehicle long March 5?[J]. Missiles and Space Vehicles, 2021(5): 58-65 (in Chinese). | |
5 | HU H F PAN H, HE Y, et al. Autonomous control technologies of the new generation launch vehicle?[J]. Aerospace China, 2021, 22(2): 25-34. |
6 | 邢林峰, 李一冰. 日本“瞳”卫星失败的启示[C]∥中国宇航学会先进小卫星技术与应用专业委员会第一届学术交流会暨第四届小卫星技术交流会, 2017. |
7 | 徐丹丹, 雷宁, 杨亦婷. 织女星火箭固体发动机研制故障综述[J]. 固体火箭技术, 2021, 44(3): 311-320. |
XU D D, LEI N, YANG Y T. Summary of failures in the development of solid rocket motor for Vega launch vehicle?[J]. Journal of Solid Rocket Technology, 2021, 44(3): 311-320 (in Chinese). | |
8 | 隋阳, 杨开. 欧洲阿里安-6新型主力火箭完成首飞[J]. 国际太空, 2024(8): 10-16. |
SUI Y, YANG K. European Ariane-6 new main rocket completed its first flight?[J]. Space International, 2024(8): 10-16 (in Chinese). | |
9 | 龙雪丹, 杨开. 猎鹰-9火箭二子级故障情况分析[J]. 国际太空, 2024(9): 14-18. |
LONG X D, YANG K. Fault analysis of Falcon-9 rocket secondary stage?[J]. Space International, 2024(9): 14-18 (in Chinese). | |
10 | 余梦伦. 液体火箭弹道设计[M]∥余梦伦院士文集. 北京: 中国宇航出版社, 2019: 68. |
YU M L. Liquid rocket ballistic design?[M]?∥Collected Works of Academician Yu Menglun. Beijing: China Astronautic Publishing House, 2019: 68 (in Chinese). | |
11 | GOODMAN J. Helmut horn and the origin of the Saturn V iterative guidance mode (IGM): AIAA-2021-2020[R]. Reston: AIAA, 2021. |
12 | GOODMAN J. Roland jaggers and the development of space shuttle powered explicit guidance (PEG)?[C]?∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
13 | SONG Z Y, ZHAO D J, THEIL S. Autonomous trajectory planning and guidance control for launch vehicles[M]. Berlin: Springer Nature, 2023: 36-41. |
14 | PORTEN P V D, AHMAD N, HAWKINS M, et al. Powered explicit guidance modifications and enhancements for space launch system block-1 and block-1B vehicles[C]∥AAS GNC (Guidance, Navigation, and Control) Conference. San Francisco: AAS, 2018. |
15 | 宋征宇. 从准确、精确到精益求精: 载人航天推动运载火箭制导方法的发展[J]. 航天控制, 2013, 31(1): 4-10, 31. |
SONG Z Y. From accurate, precise to perfect-manned space promotes the development of guidance method on launch vehicle?[J]. Aerospace Control, 2013, 31(1): 4-10, 31 (in Chinese). | |
16 | 施国兴, 吕新广, 巩庆海. 满足多终端约束的二次曲线迭代制导方法研究[J]. 中国空间科学技术, 2018, 38(2): 24-31. |
SHI G X, LYU X G, GONG Q H. Research on quadratic curve IGM for multi-terminal constraints?[J]. Chinese Space Science and Technology, 2018, 38(2): 24-31 (in Chinese). | |
17 | 何勇, 王健, 宋征宇, 等. 自适应预测补偿的迭代制导方法及其应用研究[J]. 宇航学报, 2022, 43(6): 762-771. |
HE Y, WANG J, SONG Z Y, et al. Study and application of iterative guidance algorithm with adaptive prediction and compensation?[J]. Journal of Astronautics, 2022, 43(6): 762-771 (in Chinese). | |
18 | SONG Z Y, LIU Y, HE Y, et al. Autonomous mission reconstruction during the ascending flight of launch vehicles under typical propulsion system failures?[J]. Chinese Journal of Aeronautics, 2022, 35(6): 211-225. |
19 | WANG C, SONG Z Y. Powered-coast-powered guidance reconfiguration method of launch vehicle with thrust drop fault[J]. Guidance, Navigation and Control, 2022, 2(1): 2250003. |
20 | SONG Z Y, WANG C, GONG Q H. Joint dynamic optimization of the target orbit and flight trajectory of a launch vehicle based on state-triggered indices?[J]. Acta Astronautica, 2020, 174: 82-93. |
21 | SONG Z. The development of autonomous dynamic trajectory optimization control of launch vehicles?[J]. Aerospace China, 2020, 21(2): 5-15. |
22 | 王聪, 王劲博, 宋征宇. 登月火箭剩余运载能力估计与停泊轨道重规划[J]. 宇航学报, 2023, 44(9): 1317-1328. |
WANG C, WANG J B, SONG Z Y. Residual carrying capacity evaluation and parking orbit re-planning for lunar exploration launch vehicle?[J]. Journal of Astronautics, 2023, 44(9): 1317-1328 (in Chinese). | |
23 | 宋征宇, 巩庆海, 王聪, 等. 长征运载火箭上升段的自主制导方法及其研究进展[J]. 中国科学: 信息科学, 2021, 51(10): 1587-1608. |
SONG Z Y, GONG Q H, WANG C, et al. Review and progress of the autonomous guidance method for Long March launch vehicle ascent flight[J]. Scientia Sinica (Informationis), 2021, 51(10): 1587-1608 (in Chinese). | |
24 | LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 193. |
25 | XU Y W, LI D W, XI Y G, et al. An improved predictive controller on the FPGA by hardware matrix inversion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7395-7405. |
26 | 谭述君, 何骁, 张立勇, 等. 运载火箭推力故障下基于智能决策的在线轨迹重规划方法[J]. 宇航学报, 2021, 42(10): 1228-1236. |
TAN S J, HE X, ZHANG L Y, et al. Online trajectory replanning method based on intelligent decision-making for launch vehicles under thrust drop failure?[J]. Journal of Astronautics, 2021, 42(10): 1228-1236 (in Chinese). | |
27 | Horn J F, Schmidt E M, Geiger B R, et al. Neural network-based trajectory optimization for unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 548-562. |
28 | SHI J L, WANG J B, SU L F, et al. A neural network warm-started indirect trajectory optimization method[J]. Aerospace, 2022, 9(8): 435. |
29 | SONG Z Y, PAN H, SHAO M H. Responsive tolerant control: an approach to extend adaptability of launch vehicles?[J]. Progress in Aerospace Sciences, 2024, 149: 101028. |
30 | 潘豪, 胡瑞光, 宋征宇, 等. 推力矢量极性错误下的飞行控制自主重构技术[J]. 中国科学: 信息科学, 2022, 52(5): 870-889. |
PAN H, HU R G, SONG Z Y, et al. Autonomous reconfiguration of flight control under thrust vector polarity errors[J]. Scientia Sinica (Informationis), 2022, 52(5): 870-889 (in Chinese). | |
31 | 潘豪, 王光辉, 邵梦晗, 等. 基于ESO的运载火箭姿控喷管故障辨识设计及实现[J]. 导弹与航天运载技术, 2021(1): 72-75. |
PAN H, WANG G H, SHAO M H, et al. Design and implementation of fault identification for attitude control nozzle of launch vehicle based on ESO?[J]. Missiles and Space Vehicles, 2021(1): 72-75 (in Chinese). | |
32 | SIMPLíCIO P, MARCOS A. New control functionalities for launcher load relief in ascent and descent flight[C]∥8th European Conference for Aeronautics and Aerospace Sciences. Paris: EUCASS, 2019. |
33 | SONG Z Y, PAN H, XU S S, et al. Comprehensive load relief of launch vehicle with the constraints of legacy stages[J]. AIAA Journal, 2022, 60(8): 4991-5003. |
34 | 吴素春, 贾文成, 邱吉宝. 载人运载火箭全箭模态试验[J]. 宇航学报, 2005, 26(5): 531-534, 570. |
WU S C, JIA W C, QIU J B. Integrated modal test for the manned launch vehicle?[J]. Journal of Astronautics, 2005, 26(5): 531-534, 570 (in Chinese). | |
35 | 贾文成, 王鹏辉, 张永亮. 新一代大型火箭全箭模态试验[J]. 强度与环境, 2017, 44(2): 1-9. |
JIA W C, WANG P H, ZHANG Y L. Modal test technology for the new large launch vehicle?[J]. Structure & Environment Engineering, 2017, 44(2): 1-9 (in Chinese). | |
36 | 邵梦晗, 胡海峰, 潘豪, 等. 一种运载火箭弹性自主辨识与自适应控制方法[J]. 宇航学报, 2023, 44(12): 1916-1924. |
SHAO M H, HU H F, PAN H, et al. A method for elastic autonomous identification and adaptive control of launch vehicles?[J]. Journal of Astronautics, 2023, 44(12): 1916-1924 (in Chinese). | |
37 | 袁赫, 李静琳, 宋征宇, 等. 运载火箭飞行载荷联合优化控制技术[J]. 宇航学报, 2022, 43(10): 1291-1301. |
YUAN H, LI J L, SONG Z Y, et al. Joint optimal control technology of launch vehicle flight load[J]. Journal of Astronautics, 2022, 43(10): 1291-1301 (in Chinese). | |
38 | 赵永志, 张普卓, 杜昊昱, 等. 面对称运载火箭优势面滚转迎风技术[J]. 国防科技大学学报, 2024, 46(3): 88-97. |
ZHAO Y Z, ZHANG P Z, DU H Y, et al. Preferred plane bank-to-wind technology for plane-symmetric launch vehicle?[J]. Journal of National University of Defense Technology, 2024, 46(3): 88-97 (in Chinese). |
/
〈 |
|
〉 |