基于合成双射流的简单襟翼流动分离控制研究

  • 周子杰 ,
  • 罗振兵 ,
  • 邓雄 ,
  • 周岩 ,
  • 郭正 ,
  • 张鉴源 ,
  • 赵志杰
展开
  • 1. 国防科技大学
    2. 国防科技大学空天科学学院

收稿日期: 2024-11-08

  修回日期: 2024-12-27

  网络出版日期: 2024-12-30

基金资助

军内协作项目:2022-YJKQDL-F90301011

Flow separation control of simple flaps based on Dual Synthetic Jets

  • ZHOU Zi-Jie ,
  • LUO Zhen-Bing ,
  • DENG Xiong ,
  • ZHOU Yan ,
  • GUO Zheng ,
  • ZHANG Jian-Yuan ,
  • ZHAO Zhi-Jie
Expand

Received date: 2024-11-08

  Revised date: 2024-12-27

  Online published: 2024-12-30

摘要

为探究基于阵列式合成双射流对大偏角简单襟翼的流动分离控制能力,采用数值模拟的方法,研究了不同参数下翼型绕流流场的气动控制特性及控制机理,并详细研究分离涡的控制演化。结果表明:随着无量纲动量系数Cμ的增大,合成双射流对于流动分离的控制能力逐渐提高,当合成双射流无量纲驱动频率F+=3.088、动量系数Cμ=0.02899时,增升减阻效果好,效费比低,算例内综合控制效果最佳。此外,阵列式合成双射流有效控制了大偏角简单襟翼的分离涡脱落演化,通过射流加速翼型上表面气流速度,吸引剪切层外高速气流重新附壁,吸入剪切层内低能量气流,供翼型分离区流体抵抗气流粘性耗散。该循环将展向发展的大尺度螺旋旋涡诱导控制为小尺度涡,使襟翼壁面上气流逆压梯度得到缓解,减少襟翼能量耗散。

本文引用格式

周子杰 , 罗振兵 , 邓雄 , 周岩 , 郭正 , 张鉴源 , 赵志杰 . 基于合成双射流的简单襟翼流动分离控制研究[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31512

Abstract

This study investigates the flow separation control capability of an array of dual synthetic jets on a high-angle simple flap through numerical simulations. The aerodynamic control characteristics and mechanisms of the flow field around the airfoil were analyzed under various parameters, with a detailed examination of the control evolution of the separation vortex. The results indicate that as the dimensionless momentum coefficient Cμ increases, the control effectiveness of the dual synthetic jets for flow separation progressively improves. Optimal lift enhancement and drag reduction effects are achieved when the dimensionless driving frequency F+=3.088 and the momentum coefficient Cμ=0.02899, resulting in the best overall control performance within the investigated cases. Additionally, the array of dual synthetic jets effectively controlled the evolution of the separation vortex on the high-angle simple flap by accelerating the airflow over the upper surface of the airfoil, attracting high-speed airflow from the shear layer to reattach to the surface, and drawing in low-energy airflow from the shear layer to counteract the viscous dissipation in the separation region. This cyclic process transforms the development of large-scale spiral vortices into smaller-scale vortices, alleviating the adverse pressure gradient on the flap surface and reducing energy dissipation in the flap.

参考文献

[1]海军装备部飞机办公室、中国航空工业发展研究中心编.国外舰载机技术发展[M].北京:航空工业出版社,2008.
Aircraft Office of the Naval Equipment Department, China Aviation Industry Development Research Center, ed. Development of Foreign Carrier-Based Aircraft Technology [M]. Beijing: Aviation Industry Press, 2008.
[2]Seifert, A.; Bachar, T.; Koss, D. et al. Oscillatory Blowing: A Tool to Delay Boundary-Layer Separation[J].American Institute of Aeronautics and Astronautics,1993,Vol.31(11): 2052-2060.
[3]王万波,姜裕标,黄勇,等.脉冲吹气对无缝襟翼翼型气动性能的影响[J].航空学报,2018,第39卷(11): 37-48.
WANG W B, JIANG Y B, HUANG Y, et al. Effect of Pulsed Blowing on the Aerodynamic Performance of Seamless Flap Airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 37-48 (in Chinese).
[4]史子颉,许和勇,郭润杰,等.协同射流在垂直尾翼流动控制中的应用研究[J].航空工程进展,2022,第13卷(1): 28-41.
SHI Z J, XU H Y, GUO R J, et al. Research on the Application of Coherent Jet in Flow Control of Vertical Tail[J]. Advances in Aeronautical Engineering, 2022, 13(1): 28-41 (in Chinese).
[5]Huang L, Maestrello L, Bryant T . Separation control over an airfoil at high angles of attack by soundemanating from the surface[J]. 1987.DOI:10.2514/6.1987-1261.
[6]Chabphet P, Supanat Santichatsak S, Thalang T N, et al. High-Lift Mechanism Motion Generation Synthesis using a Metaheuristic [J]. Proceedings, 2019, 39(1): 5.
[7]Xu HY,Qiao CL,Yang HQ, et al. Active Circulation Control on the Blunt Trailing Edge Wind Turbine Airfoil[J].AIAA JOURNAL,2018,Vol.56(2): 554-570.
[8]Feng LH,Shi TY,Liu YG, et al.Lift Enhancement of an Airfoil and an Unmanned Aerial Vehicle by Plasma Gurney Flaps[J].AIAA Journal,2017,Vol.55(5): 1622-1632.
[9]Hoholis G , Steijl R , Badcock K .Circulation Control as a Roll Effector for Unmanned Combat Aerial Vehicles[J].Journal of Aircraft, 2016, 53(6):1875-1889.
[10]林泳辰,徐惊雷,韩杰星,等.气动推力矢量无舵面飞翼的飞行实验[J].航空动力学报,2019,第34卷(3): 701-707.
LIN Y C, XU J L, HAN J X, et al. Flight Experiment of Aerodynamic Thrust Vectoring on a Wing with No Control Surfaces[J]. Journal of Aerospace Power, 2019, 34(3): 701-707 (in Chinese).
[11]曹永飞,顾蕴松,韩杰星.流体推力矢量技术验证机研制及飞行试验研究[J].空气动力学学报,2019,第37卷(4): 593-599.
CAO Y F, GU Y S, HAN J X. Development and Flight Test Research of Fluid Thrust Vectoring Technology Verification Aircraft[J]. Journal of Aerodynamics, 2019, 37(4): 593-599 (in Chinese).
[12]赵志杰,罗振兵,刘杰夫,等.基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验)[J].力学学报,2022,(5).
ZHAO Z J, LUO Z B, LIU J F, et al. Flight Test of Control for Three-Axis Attitude of Aircraft without Control Surfaces Based on dual synthetic jets [J]. Journal of Mechanics, 2022, 54(5): 1-12 (in Chinese).
[13]张刘,黄勇,陈辅政,等.基于环量控制的无尾飞翼俯仰和滚转两轴无舵面姿态控制飞行试验[J].航空学报,2023,第44卷(18): 75-84.
ZHANG L, HUANG Y, CHEN F Z, et al. Flight Test of Attitude Control in Pitching and Rolling Axes of Tailless Flying Wing Based on Circulation Control[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 75-84 (in Chinese).
[14]G K Korbacher;.Aerodynamics of Powered High-Lift Systems[J].Annual Review of Fluid Mechanics,1974,Vol.6(1): 319-358.
[15]Li J, Gong Z B, Zhang H, et al. Numerical Investigation of Powered High-Lift Model with Externally Blown Flap [J]. Journal of Aircraft, 2017, 54(4): 1539~1551.
[16]Wick A, Hooker J, BarberieF, et al. Powered Lift CFD Predictions of a Transonic Cruising STOL Military Transport [C]. AIAA Paper, 2013, 2013-1098.
[17]Ren F, Hu HB, Tang H. Active Flow Control using Machine Learning: A brief Review [J]. Journal of Hydrodynamics, 2020, 32(2): 247~253.
[18]Chen W L, Huang Y W, Chen C L, et al. Review of Active Control of Circular Cylinder Flow [J]. Ocean Engineering, 2022, 258: 111840.
[19]Smith, B.L.*;Glezer, A.*.The formation and evolution of synthetic jets[J].Physics of Fluids,1998,Vol.10(9): 2281-2297.
[20]罗振兵,夏智勋,邓雄,等.合成双射流及其流动控制技术研究进展[J].空气动力学学报,2017,第35卷(2): 252-264,251.
LUO Z B, XIA Z X, DENG X, et al. Research progress on dual synthetic jets and its flow control technology[J]. Journal of Aerodynamics, 2017, 35(2): 252-264, 251 (in Chinese).
[21]Seifert, A;Darabai, A.Delay of airfoil stall by periodic excitation.[J].Journal of Aircraft,1997,Vol.33(4): 691.
[22]LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA JOURNAL,2006,44(10): 2418-2420.
[23]张攀峰,王晋军.孔口倾斜角对合成射流控制翼型流动分离的影响[J].兵工学报,2009,(12): 1658-1662.
ZHANG P F, WANG J J. Effect of Nozzle Inclination Angle on Flow Separation Control of Synthetic Jet Airfoils[J]. Journal of Ordnance Engineering, 2009, (12): 1658-1662 (in Chinese).
[24]刘峰,邹建锋,郑耀.合成射流物理参数对控制翼型流动分离的影响[J].浙江大学学报(工学版),2013,第47卷(1): 146-153.
LIU F, ZOU J F, ZHENG Y. Influence of synthetic jet physical parameters on flow separation control of airfoil[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(1): 146-153. (in Chinese).
[25]Swanson R C, Rumsey C L. Computation of circulation control airfoil flows[J].Computers & Fluids, 2009, 38(10):1925-1942.
[26]JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics,1995,285:69-94.
文章导航

/