基于合成双射流的简单襟翼流动分离控制
收稿日期: 2024-11-08
修回日期: 2024-12-02
录用日期: 2024-12-24
网络出版日期: 2024-12-30
基金资助
国家自然科学基金联合基金(U2141252)
Flow separation control of simple flaps based on dual synthetic jets
Received date: 2024-11-08
Revised date: 2024-12-02
Accepted date: 2024-12-24
Online published: 2024-12-30
Supported by
Joint Funds of the National Natural Science Foundation of China(U2141252)
为探究基于阵列式合成双射流对大偏角简单襟翼的流动分离控制能力,采用数值模拟的方法,研究了不同参数下翼型绕流流场的气动控制特性及控制机制,并详细研究分离涡的控制演化。结果表明:随着无量纲动量系数Cμ 的增大,合成双射流对于流动分离的控制能力逐渐提高,当合成双射流无量纲驱动频率F+ =3.088、动量系数Cμ =0.028 99时,增升减阻效果好、效费比低,算例内综合控制效果最佳。此外,阵列式合成双射流有效控制了大偏角简单襟翼的分离涡脱落演化,通过射流加速翼型上表面气流速度,吸引剪切层外高速气流重新附壁,吸入剪切层内低能量气流,供翼型分离区流体抵抗气流黏性耗散。该循环将展向发展的大尺度螺旋旋涡诱导控制为小尺度涡,使襟翼壁面上气流逆压梯度得到缓解,减少襟翼能量耗散。
周子杰 , 罗振兵 , 邓雄 , 周岩 , 郭正 , 张鉴源 , 赵志杰 . 基于合成双射流的简单襟翼流动分离控制[J]. 航空学报, 2025 , 46(14) : 131512 -131512 . DOI: 10.7527/S1000-6893.2024.31512
This study investigates the flow separation control capability of an array of dual synthetic jets on a high-angle simple flap. Through numerical simulations.The aerodynamic control characteristics and mechanisms of the flow field around the airfoil were analyzed under various parameters,with a detailed examination of the control evolution of the separation vortex. The results indicate that as the dimensionless momentum coefficient Cμ increases, the control effectiveness of the dual synthetic jets for flow separation progressively improves. Optimal lift enhancement and drag reduction effects are achieved when the dimensionless driving frequency F + =3.088 and the momentum coefficient Cμ =0.028 99, resulting in the best overall control performance within the investigated cases. Additionally, the array of dual synthetic jets effectively controlled the evolution of the separation vortex on the high-angle simple flap by accelerating the airflow over the upper surface of the airfoil attracting high-speed airflow from the shear layer to reattach to the surface, and low-energy airflow drawing in from the shear layer to counteract the viscous dissipation in the separation region. This cyclic process transforms the development of large-scale spiral vortices into smaller-scale vortices, alleviating the adverse pressure gradient on the flap surface and reducing energy dissipation in the flap.
| [1] | 海军装备部飞机办公室, 中国航空工业发展研究中心. 国外舰载机技术发展: 气动、起降、材料、反潜、直升机预警[M]. 北京: 航空工业出版社, 2008. |
| Aircraft Office of the Naval Equipment Department, China Aviation Industry Development Research Center. Development of foreign carrier-based aircraft technology: Aerodynamics, take-off and landing, materials, anti-submarine, helicopter early warning?[M]. Beijing: Aviation Industry Press, 2008 (in Chinese). | |
| [2] | SEIFERT A, BACHAR T, KOSS D, et al. Oscillatory blowing: A tool to delay boundary-layer separation[J]. AIAA Journal, 1993, 31(11): 2052-2060. |
| [3] | 王万波, 姜裕标, 黄勇, 等. 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报, 2018, 39(11): 122129. |
| WANG W B, JIANG Y B, HUANG Y, et al. Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 122129 (in Chinese). | |
| [4] | 史子颉, 许和勇, 郭润杰, 等. 协同射流在垂直尾翼流动控制中的应用研究[J]. 航空工程进展, 2022, 13(1): 28-41. |
| SHI Z J, XU H Y, GUO R J, et al. Application research of flow control using co-flow jet on a vertical tail[J]. Advances in Aeronautical Science and Engineering, 2022, 13(1): 28-41 (in Chinese). | |
| [5] | HUANG L, MAESTRELLO L, BRYANT T. Separation control over an airfoil at high angles of attack by soundemanating from the surface[C]∥19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston: AIAA, 1987: 1261. |
| [6] | CHABPHET P, SANTICHATSAK S, THALANG T N, et al. High-lift mechanism motion generation synthesis using a metaheuristic[C]?∥Proceedings of Innovation Aviation & Aerospace Industry-International Conference 2020.Basel: MDPI, 2019: 5. |
| [7] | XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2018, 56(2): 554-570. |
| [8] | FENG L H, SHI T Y, LIU Y G. Lift enhancement of an airfoil and an unmanned aerial vehicle by plasma gurney flaps[J]. AIAA Journal, 2017, 55(5): 1622-1632. |
| [9] | HOHOLIS G, STEIJL R, BADCOCK K. Circulation control as a roll effector for unmanned combat aerial vehicles[J]. Journal of Aircraft, 2016, 53(6): 1875-1889. |
| [10] | 林泳辰, 徐惊雷, 韩杰星, 等. 气动推力矢量无舵面飞翼的飞行实验[J]. 航空动力学报, 2019, 34(3): 701-707. |
| LIN Y C, XU J L, HAN J X, et al. Flight test of a fluidic thrust vectoring flying wing without rudder[J]. Journal of Aerospace Power, 2019, 34(3): 701-707 (in Chinese). | |
| [11] | 曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究[J]. 空气动力学学报, 2019, 37(4): 593-599. |
| CAO Y F, GU Y S, HAN J X. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamica Sinica, 2019, 37(4): 593-599 (in Chinese). | |
| [12] | 赵志杰, 罗振兵, 刘杰夫, 等. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验[J]. 力学学报, 2022, 54(5): 1220-1228. |
| ZHAO Z J, LUO Z B, LIU J F, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1220-1228 (in Chinese). | |
| [13] | 张刘, 黄勇, 陈辅政, 等. 基于环量控制的无尾飞翼俯仰和滚转两轴无舵面姿态控制飞行试验[J]. 航空学报, 2023, 44(18): 128224. |
| ZHANG L, HUANG Y, CHEN F Z, et al. Rudderless attitude control flight test based on circulation control of tailless flying wing in pitch and roll axes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128224 (in Chinese). | |
| [14] | KORBACHER G K. Aerodynamics of powered high-lift systems[J]. Annual Review of Fluid Mechanics, 1974, 6: 319-358. |
| [15] | LI J, GONG Z B, ZHANG H, et al. Numerical investigation of powered high-lift model with externally blown flap[J]. Journal of Aircraft, 2017, 54(4): 1539-1551. |
| [16] | WICK A, HOOKER J, BARBERIE F, et al. Powered lift CFD predictions of a transonic cruising STOL military transport[C]∥51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 1098. |
| [17] | REN F, HU H B, TANG H. Active flow control using machine learning: A brief review[J]. Journal of Hydrodynamics, 2020, 32(2): 247-253. |
| [18] | CHEN W L, HUANG Y W, CHEN C L, et al. Review of active control of circular cylinder flow[J]. Ocean Engineering, 2022, 258: 111840. |
| [19] | SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281-2297. |
| [20] | 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252-264, 251. |
| LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252-264, 251 (in Chinese). | |
| [21] | SEIFERT A, DARABI A, WYGANSKI I. Delay of airfoil stall by periodic excitation[J]. Journal of Aircraft, 1996, 33(4): 691-698. |
| [22] | 张攀峰, 王晋军. 孔口倾斜角对合成射流控制翼型流动分离的影响[J]. 兵工学报, 2009, 30(12): 1658-1662. |
| ZHANG P F, WANG J J. Effect of orifice inclined angle on flow control of the stalled airfoil with synthetic jet actuator[J]. Acta Armamentarii, 2009, 30(12): 1658-1662 (in Chinese). | |
| [23] | 张攀峰, 王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报, 2008, 34(4): 443-446. |
| ZHANG P F, WANG J J. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in recirculation region[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(4): 443-446 (in Chinese). | |
| [24] | 刘峰, 邹建锋, 郑耀. 合成射流物理参数对控制翼型流动分离的影响[J]. 浙江大学学报(工学版), 2013, 47(1): 146-153. |
| LIU F, ZOU J F, ZHENG Y. Effect of synthetic jets physical parameters on flow separation control over airfoil[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(1): 146-153 (in Chinese). | |
| [25] | 李斌斌, 姚勇, 顾蕴松, 等. 合成射流低速射流矢量偏转控制的PIV实验研究[J]. 空气动力学学报, 2018, 36(1): 22-25, 30. |
| LI B B, YAO Y, GU Y S, et al. PIV experiments on vector deflection control of lowspeed synthetic jet?[J]. Acta Aerodynamica Sinica, 2018, 36(1): 22-25, 30 (in Chinese). | |
| [26] | 史志伟, 张海涛. 合成射流控制翼型分离的流动显示与PIV测量[J]. 实验流体力学, 2008, 22(3): 49-53. |
| SHI Z W, ZHANG H T. Flow visualization and PIV measurement of airfoil separated flow control based on synthetic jet[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 49-53 (in Chinese). | |
| [27] | 王雷, 李哲, 冯立好. 合成射流激励器能量转换效率的参数影响规律及优化研究[J]. 实验流体力学, 2023, 37(4): 87-95. |
| WANG L, LI Z, FENG L H. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 87-95 (in Chinese). | |
| [28] | 刘小波, 张伟伟, 蒋跃文, 等. 尾缘合成射流影响翼型非定常气动特性的数值研究[J]. 空气动力学学报, 2012, 30(5): 606-612. |
| LIU X B, ZHANG W W, JIANG Y W, et al. Numerical study on unsteady aerodynamic characteristics of an airfoil with a synthetic jet set in trailing edge[J]. Acta Aerodynamica Sinica, 2012, 30(5): 606-612 (in Chinese). | |
| [29] | LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA Journal, 2006, 44(10): 2418-2420. |
| [30] | SWANSON R C, RUMSEY C L. Computation of circulation control airfoil flows?[J]. Computers & Fluids, 2009, 38(10): 1925-1942. |
| [31] | RUMSEY C, GATSKI T, YING S S, et al. Prediction of high-lift flows using turbulent closure models?[C]?∥15th Applied Aerodynamics Conference. Reston: AIAA, 1997: 2260. |
| [32] | 刘睿, 白俊强, 邱亚松, 等. 内吹式襟翼几何参数影响研究与优化设计[J]. 西北工业大学学报, 2020, 38(1): 58-67. |
| LIU R, BAI J Q, QIU Y S, et al. Effects of geometrical parameters of internal blown flap and its optimal design[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 58-67 (in Chinese). | |
| [33] | 王万波, 姜裕标, 黄勇, 等. 大型飞机襟翼吹气增升风洞试验[J]. 航空学报, 2023, 44(13): 127870. |
| WANG W B, JIANG Y B, HUANG Y, et al. Lift enhancement wind tunnel test with flap blowing for large aircraft?[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127870 (in Chinese). | |
| [34] | 张鉴源, 罗振兵, 彭文强, 等. 基于合成双射流的襟翼舵效增强技术研究[J]. 实验流体力学, 2023, 37(4): 76-86. |
| ZHANG J Y, LUO Z B, PENG W Q, et al. Investigation on performance enhancement of flap based on dual synthetic jets?[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 76-86 (in Chinese). | |
| [35] | JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94. |
/
| 〈 |
|
〉 |