无人机系统人因设计关键技术研究进展

  • 冯传宴 ,
  • 刘双 ,
  • 完颜笑如 ,
  • 丁梦龙 ,
  • 李道春 ,
  • 周尧明
展开
  • 1. 北京航空航天大学
    2. 清华大学
    3. 天目山实验室

收稿日期: 2024-09-18

  修回日期: 2024-12-18

  网络出版日期: 2024-12-23

基金资助

国家自然科学基金;国家自然科学基金;航空科学基金

Research progress on key technologies for human factors design of un-manned aircraft systems

  • FENG Chuan-Yan ,
  • LIU Shuang ,
  • WAN Yan-XiaoRu ,
  • DING Meng-Long ,
  • LI Dao-Chun ,
  • ZHOU Yao-Ming
Expand

Received date: 2024-09-18

  Revised date: 2024-12-18

  Online published: 2024-12-23

摘要

伴随着机械故障的显著降低和人工智能(Artificial Intelligence,AI)技术的迅猛发展,无人机系统(Unmanned Aircraft System,UAS)所涉及的人因问题愈发严峻。为了提升低空经济下专业化无人机系统的综合作业效能,必须突破无人机系统人因设计的关键技术。以文献研究和工业实践经验为基础,梳理了体系化的无人机系统人因标准制定、高效且互信的人-AI协同作业、全生命周期的人因设计3个科学问题。首先,总结了无人机系统面临的独特人因挑战。然后,提出了自动化设计、显控交互设计、人员配置与协作、选拔与培训4类人因问题现状。最后,重点阐述了无人机系统的人因标准体系架构设计、人-AI高效组队设计、人与系统集成设计这3项人因设计关键技术及其进展。

本文引用格式

冯传宴 , 刘双 , 完颜笑如 , 丁梦龙 , 李道春 , 周尧明 . 无人机系统人因设计关键技术研究进展[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31213

Abstract

With the significant reduction in mechanical failures and the rapid development of Artificial Intelligence (AI) technology, human factors (HF) issues in Unmanned Aircraft Systems (UAS) are becoming increasingly serious. To enhance the overall performance of specialized UAS in the low-altitude economy, it is essential to address key HF design technolo-gies. This paper, based on literature research and industrial practical experience, identifies three scientific problems: the formulation of systematic UAS HF standards, efficient and trustworthy human-AI collaboration, and life-cycle HF design. First, the unique HF challenges of UAS are outlined. Next, current status of four categories of HF issues are proposed: automation design, display and control interaction design, staffing and collaboration, and selection and training. Finally, three key HF design technologies and their progress—HF standard architecture design for UAS, efficient human-AI teaming design, and human-system integration design—are highlighted.

参考文献

郭辰阳, 敖万忠, 吕宜宏. 低空经济与通用航空、无人机、UAM的关系分析[J/OL]. 财经界, 2023(28): 30-32. DOI:10.19887/j.cnki.cn11-4098/f.2023.28.012. GUO C Y, Ao W Z, LV Y H. Analysis of the Low Altitude Economy in Relation to General Aviation, UAVs, and UAMs[J]. Money China, 2023(28): 30-32. (in Chinese) [2] 李超. 垂直起降-2024年中国低空经济前景研究报告[R]. 艾瑞研究院, 2024. LI C. Vertical Takeoff and Landing-2024 China Low Altitude Economy Prospect Research Report[R]. iResearch Institute, 2024. (in Chinese) [3] 赛迪研究院. 中国低空经济发展研究报告(2024)[R]. 2024. Ccid Research Institute. China Low Altitude Econo-my Development Research Report (2024)[R]. 2024. (in Chinese) [4] Cooke N J, Rowe L J, Bennett W. Remotely Piloted Aircraft Systems[M]. 2016. [5] Gupta S G, Ghonge M, Jawandhiya P M. Review of Unmanned Aircraft System (UAS)[J/OL]. SSRN Electronic Journal, 2013[2023-08-11]. https://www.ssrn.com/abstract=3451039. DOI:10.2139/ssrn.3451039. [6] Hobbs A N. Remotely piloted aircraft sys-tems[M/OL]//Human Factors in Aviation and Aero-space. Elsevier, 2023: 399-419[2024-06-23]. https://linkinghub.elsevier.com/retrieve/pii/B9780124201392000071. DOI:10.1016/B978-0-12-420139-2.00007-1. [7] McCarley J S, Wickens C D. Human Factors Impli-cations of UAVs in the National Airspace[J]. 2005. [8] 王颖, 王谋, 印春峰. 中国低空经济发展热现象下的冷思考[J]. 中国工程咨询, 2024(3): 48-52. WANG Y, WANG M, Yin C F. Cold thinking under the hot phenomenon of low-altitude economic de-velopment in China [J]. China Engineering Consult-ing, 2024(3): 48-52. (in Chinese) [9] Johnson C. The hidden human factors in unmanned aerial vehicles[J]. 2008. [10] Dolgov I, Hottman S B. 11 Human Factors in Un-manned Aircraft Systems[M]//Introduction to Un-manned Aircraft Systems. first edition. 2012. [11] Williams K W. A Summary of Unmanned Aircraft Accident/Incident Data: Human Factors Implica-tions[J]. 2005. [12] Cooke N J, Self B, Calhoun G, et al. Human Factors of Remotely Operated Vehicles[J]. th ANNUAL MEETING, 2006. [13] McCarley J S, Wickens C D. Human factors con-cerns in UAV flight[R]. University of Illinois at Ur-bana-Champaign Institute of Aviation, Aviation Hu-man Factors Division., 2004. [14] 蒋浩, 高鑫. 人因工程在无人机中的应用及展望[J/OL]. 航空科学技术, 2019, 30(5): 9-13. DOI:10.19452/j.issn1007-5453.2019.05.002. JIANG H,GAO X .Application and Prospect of Human Factor Engineering in Unmanned Aerial Ve-hicle[J/OL]. Aeronautical Science & Technology, 2019, 30(5): 9-13. (in Chinese) [15] 丁国杰, 徐安, 揭永琴, 等. 2024上海低空经济发展白皮书[R]. 2024. DING G J, XU A, JIE Y Q, et al. White Paper on Low Altitude Economic Development in Shanghai 2024[R]. 2024. (in Chinese) [16] 中国无人机产业创新联盟, 腾讯智慧交通, 腾讯研究院. 2024年中国eVTOL产业发展报告[R]. 2024. CHINA UAV INDUSTRY INNOVATION ALLIANCE, TENCENT INTELLIGENT TRANSPORTATION, ENCENT RESEARCH INSTITUTE. China eVTOL Industry Development Report 2024[R]. 2024. (in Chinese) [17] 许为, 葛列众. 智能时代的工程心理学[J]. 心理科学进展, 2020, 28(9): 1409-1425. XU W, GE L Z. Engineering psychology in the era of artificial intelligence[J]. Advances in Psychologi-cal Science, 2020, 28(9): 1409-1425. (in Chinese) [18] 王娜. 舰员仅为伯克级的一半DDG 1000 如何做到?[J]. 舰船知识, 2014: 50-55. WANG N. With a crew half the size of the Burke class DDG 1000 How did it happen? [J]. Ship Knowledge, 2014: 50-55. (in Chinese) [19] Barnhart R K, Marshall D M, Shappee E J. Introduc-tion to unmanned aircraft systems[M]. Third editon. Boca Raton London New York: CRC Press, 2021. [20] ISO 21384-4. Unmanned aircraft systems — Part 4 Vocabulary[R]. 2020. [21] Chauhan B B. Urban Air Mobility: Human Factors Considerations[J]. 2020. [22] Hobbs A N, Lyall B. Human factors guidelines for unmanned aircraft system ground control stations[J]. NASA, September, 2015. [23] Hobbs A N, Lyall B. Human Factors Guidelines for Unmanned Aircraft Systems[J/OL]. Ergonomics in Design: The Quarterly of Human Factors Applica-tions, 2016, 24(3): 23-28. DOI:10.1177/1064804616640632. [24] Ordoukhanian E, Madni A M. Human-Systems Inte-gration Challenges in Resilient Multi-UAV Opera-tion[M/OL]//Chen J. Advances in Human Factors in Robots and Unmanned Systems: Vol. 595. Cham: Springer International Publishing, 2018: 131-138[2024-06-14]. http://link.springer.com/10.1007/978-3-319-60384-1_13. DOI:10.1007/978-3-319-60384-1_13. [25] Connor O, Pedersen H, Cooke N J, et al. CERI hu-man factors of UAVs: 2004 and 2005 workshop overviews[M]//Human factors of remotely operated vehicles. Emerald Group Publishing Limited, 2006: 3-20. [26] Zhang X, Jia G, Chen Z. The Literature Review of Human Factors Research on Unmanned Aerial Vehi-cle – What Chinese Researcher Need to Do Next?[M/OL]//Rau P L P. Cross-Cultural Design. Methods, Tools, and Users: Vol. 10911. Cham: Springer International Publishing, 2018: 375-384[2024-06-14]. https://link.springer.com/10.1007/978-3-319-92141-9_29. DOI:10.1007/978-3-319-92141-9_29. [27] Boring R L, Roth E, Straeter O, et al. Is Human Reli-ability Relevant to Human Factors?[J/OL]. Proceed-ings of the Human Factors and Ergonomics Society Annual Meeting, 2009, 53(10): 610-614. DOI:10.1177/154193120905301006. [28] 中国民航局. 民用无人驾驶航空器系统分布式操作运行等级划分[R]. 2022. Civil Aviation Administration of China. Grading of distributed operation level for civil unmanned air-craft system[R]. 2022. (in Chinese) [29] Lim Y, Gardi A, Sabatini R, et al. Avionics Human-Machine Interfaces and Interactions for Manned and Unmanned Aircraft[J/OL]. Progress in Aerospace Sciences, 2018, 102: 1-46. DOI:10.1016/j.paerosci.2018.05.002. [30] Rash C E, LeDuc P A, Manning S D. 9. Human Fac-tors in US Military Unmanned Aerial Vehicle Acci-dents[M]//Human Factors of Remotely Operated Ve-hicles: 卷 7. Emerald Group Publishing Limited, 2006: 117-131. [31] Nisser T, Westin C. Human factors challenges in unmanned aerial vehicles (uavs): A literature re-view[R]. Ljungbyhed, Sweden: Lund University School of Aviation, 2006. [32] Feigh K, Pritchett A. Function Allocation between Human and Automation and Between Air and Ground[J]. Unmanned Aircraft Systems, 2016: 319. [33] 冯传宴, 完颜笑如, 刘双, 等. 负荷条件下注意力分配策略对情境意识的影响[J]. 航空学报, 2020, 41(03): 129-138. FENG C Y, WANYAN X R, LIU S, et al. Influence of Different Attention Allocation Strategies under Workloads on Situation Awareness. [J]. Acta Aero-nautica et Astronautica Sinica, 2020, 41(03): 129-138. (in Chinese) [34] Cummings M L, Zacharias G L. Aircraft Pilot and Operator Interfaces[M]//Unmanned Aircraft Systems. John Wiley & Sons, 2016: 335. [35] Karyotakis M, Braithwaite G. Human Factors and Human Performance in UAS Operations. The Case of UAS Pilots in UAM Operations[M/OL]//Harris D, Li W C. Engineering Psychology and Cognitive Er-gonomics: Vol. 14018. Cham: Springer Nature Swit-zerland, 2023: 253-278[2024-06-14]. https://link.springer.com/10.1007/978-3-031-35389-5_18. DOI:10.1007/978-3-031-35389-5_18. [36] Ruff H A, Draper M H, Lu L G, et al. Haptic feed-back as a supplemental method of alerting UAV op-erators to the onset of turbulence[C]//Proceedings of the Human Factors and Ergonomics Society Annual Meeting: vol 44. SAGE Publications Sage CA: Los Angeles, CA, 2000: 41-44. [37] 航空工业上海航空电器有限公司. HH-100航空商用无人运输系统验证机成功首飞[EB/OL]//Weixin Official Accounts Platform. (2024-06)[2024-06-23]. http://mp.weixin.qq.com/s?__biz=MjM5MDU0MjY3MA==&mid=2650538971&idx=1&sn=17f6be18d2ca9fced027e96bbd6b2084&chksm=be4b9dfa893c14ec-dcfc0b734b42e03951ddf330f47c23459b401038945d91900e263141956a#rd. AVIC shanghai aviation electric co. Successful First Flight of HH-100 Aerospace Commercial Unmanned Transportation System Demonstrator [EB/OL]//Weixin Official Accounts Platform.(2024-06)[2024-06-23]. (in Chinese) [38] Marshall D M. Coordination with Manned Aircraft and Air Traffic Control[M]//Unmanned Aircraft Sys-tems. John Wiley & Sons, 2017: 327. [39] 冯传宴, 李志忠. 人因工程与系统工程的集成 第一部分:工业实践经验回顾[J/OL]. 载人航天, 2023, 29(3): 415-426. DOI:10.16329/j.cnki.zrht.2023.03.005. FENG C Y, LI Z Z. Integration of Human Factors and Systems Engineering Part I: Review of Industrial Practice Experience[J]. Manned Spaceflight, 2023, 29(3): 415-426. (in Chinese) [40] Calhoun G L, Goodrich M A, Dougherty J R, 等. Human-Autonomy Collaboration and Coordination Toward Multi-RPA Missions[M]//Remotely Piloted Aircraft Systems: A Human Systems Integration Per-spective. Wiley Online Library, 2016: 109-136. [41] McCauley M E, Matsangas P G. Human systems integration and automation issues in small un-manned aerial vehicles[R]. 2004. [42] 向锦武, 董希旺, 丁文锐, 等. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报, 2022, 43(10): 333-365. XIANG J W, DONG X W, DING W R, et al. key technologies for autonomous cooperation of un-manned swarm systems in complex environments[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 333-365. (in Chinese) [43] Feng C, Liu S, Wanyan X, et al. A human-system integration framework and its application for special vehicle interface design under typical human readi-ness levels[J/OL]. iScience, 2024, 27(3): 109095. DOI:10.1016/j.isci.2024.109095. [44] 冯传宴, 李志忠. 人因工程与系统工程的集成 第三部分:技术路线总结和解决方案探索[J/OL]. 载人航天, 2023, 29(5): 700-710. DOI:10.16329/j.cnki.zrht.2023.05.016. FENG C Y, LI Z Z. Integration of Human Factors and Systems Engineering Part III: Summary of Tech-nical Route and Exploration of Solution [J]. Manned Spaceflight, 2023, 29(5): 133-143. (in Chinese) [45] Human Factors and Ergonomics Society. ANSI/HFES 400-2021 Human Readiness Level Scale in the System Development Process[R]. Wash-ington, DC: Human Factors and Ergonomics Society, 2021. [46] Bangor A, Kortum P, Miller J. Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale[J]. Journal of usability studies, 2009, 4(3): 114-123. [47] Hart S G, Staveland L E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research[J/OL]. Advances in Psycholo-gy, 1988, 52: 139-183. DOI:https://doi.org/10.1016/S0166-4115(08)62386-9.
文章导航

/