大型水陆两栖飞机抗浪需求分析
收稿日期: 2024-09-03
修回日期: 2024-10-15
录用日期: 2024-12-19
网络出版日期: 2024-12-23
基金资助
航空科学基金(20220015053002)
Demand analysis of wave resistance for large amphibious aircraft
Received date: 2024-09-03
Revised date: 2024-10-15
Accepted date: 2024-12-19
Online published: 2024-12-23
Supported by
Aeronautical Science Foundation of China(20220015053002)
我国海域辽阔,随着海洋活动增多,中远海域水上救援的需求越来越迫切。现有以直升机与船舶为主的救援体系存在任务距离短、抵达时间长等局限。大型水陆两栖飞机具有航程远、速度快和能水面起降的优势,能够在中远海域实施快速有效的救援,是构建我国水上救援力量的关键航空装备。在影响水陆两栖飞机实施水上救援任务出勤率和性能的因素中,抗浪能力是关键因素之一。通过研究大型水陆两栖飞机水上救援任务模式对飞机的要求,基于救援任务目标海域的海况数据,提出了一种抗浪需求分析流程和方法,能够将抗浪需求量化为飞机与抗浪能力相关的设计指标,为大型水陆两栖飞机的研制和水上救援体系的建设提供了技术参考。
杨荣 , 杨智春 , 魏浩格 . 大型水陆两栖飞机抗浪需求分析[J]. 航空学报, 2025 , 46(10) : 331145 -331145 . DOI: 10.7527/S1000-6893.2024.31145
China’s maritime territory is vast, and with the increase of Marine activities, the demand for rescue operations in the medium to long-range sea is urgent. The existing rescue system, primarily based on helicopters and ships, has limitations such as short mission range and long response times. Large amphibious aircraft, with its long range, high speed and ability of taking off and landing on the water surface, can conduct fast and effective rescue in medium and long-range sea areas, and is the key aviation equipment for building water rescue force. Among the factors that affect the attendance rate and efficiency of rescue mission, the ability to resist waves is one of the key factors. By studying the requirements of large amphibious aircraft on water rescue mission mode, based on the sea state data of the target sea area of the rescue mission, a process and method of wave resistance demand analysis are established, which can further quantify the wave resistance demand into the design index related to the aircraft’s wave resistance ability and provide reference for the development of large water rescue amphibious aircraft and the construction of emergency rescue system.
Key words: amphibious aircraft; water rescue; wave resistance; aviation equipment; water load
1 | 中华人民共和国国务院办公厅. 国务院办公厅关于加强水上搜救工作的通知[EB/OL].(2019-11-08)[2024-09-03]. . |
General Office of the State Council of the People’s Republic of China. Notice of the General Office of the State Council on strengthening water search and rescue work[EB/OL]. (2019-11-08)[2024-09-03]. (in Chinese). | |
2 | 孙朝朋. 直升机在海难救助中的应用[J]. 中国水运, 2010, 10(8): 24-25. |
SUN C P. Application of helicopter in maritime rescue [J]. China Water Transport, 2010, 10(8): 24-25 (in Chinese). | |
3 | 弓永军, 孙玉清, 李华军, 等. 海上搜救打捞装备发展研究[J]. 中国工程科学, 2024, 26(2): 50-62. |
GONG Y J, SUN Y Q, LI H J, et al. Development of maritime search, rescue and salvage equipment[J]. Strategic Study of CAE, 2024, 26(2): 50-62 (in Chinese). | |
4 | 王威, 沙小进. 海上搜救体系存在的问题与对策研究[J]. 南通航运职业技术学院学报, 2012, 11(1): 43-45. |
WANG W, SHA X J. A study of the problems and countermeasures related to the maritime search and rescue system[J]. Journal of Nantong Vocational & Technical Shipping College, 2012, 11(1): 43-45 (in Chinese). | |
5 | SMILEY R F, HAINES G A. Comparison of water-load distributions obtained during seaplane landings with Bureau of Aeronautics Specifications: NACA-RM-SL9G01 [R]. Washington, D.C.: NACA, 1949. |
6 | 《飞机设计手册》总编委会. 飞机设计手册 第9册: 载荷、强度和刚度[M]. 北京: 航空工业出版社, 2001. |
Editorial Board of Aircraft Design Manual. Aircraft design manual, Volume 9: Load, strength, and stiffness[M]. Beijing: Aviation Industry Press, 2001 (in Chinese). | |
7 | MILWITZKY B. A theoretical investigation of hydrodynamic impact loads on scalloped-bottom seaplanes and comparisons with experiment: NACA-TN-1363?[R]. Washington, D.C.: NACA, 1947. |
8 | BILANDI R N, MANCINI S, VITIELLO L, et al. A validation of symmetric 2D+T model based on single-stepped planing hull towing tank tests[J]. Journal of Marine Science and Engineering, 2018, 6(4): 136. |
9 | RIDLAND D M, AE S A F R, MECH E G I. Investigation of high length/beam ratio seaplane hulls with high beam loadings hydrodynamic stability Part 21: Some notes on the effect of waves on longitudinal stability characteristics: C.P. No.237?[R]. Aeronautical Research Council, 1956. |
10 | SANGSTON K, AVERY A, PERALTA B, et al. Characterization and analysis of the fuselage of the clipperspirit seaplane?[EB/OL]. (2022-01-10)[2024-09-03]. . |
11 | DUAN X P, SUN W P, CHEN C, et al. Numerical investigation of the porpoising motion of a seaplane planing on water with high speeds[J]. Aerospace Science and Technology, 2019, 84: 980-994. |
12 | TOWNSHEND B W. Escape, survival, search and rescue[J]. The Aeronautical Journal, 1966, 70(672): 1065-1072. |
13 | NOURGHASEMI H, BAKHTIARI M, GHASSEMI H. Numerical study of step forward swept angle effects on the hydrodynamic performance of a planing hull?[J]. Scientific Journals of the Maritime University of Szczecin, 2017, 51: 35-42. |
14 | ITO K, DHAENE T, HIRAKAWA Y, et al. Longitudinal stability augmentation of seaplanes in planing[J]. Journal of Aircraft, 2016, 53(5): 1332-1342. |
15 | SAZAK E, KURTULUS D F. Parametric investigation of hull shaped fuselage for an amphibious UAV[C]∥ Ninth International Conference on Computational Fluid Dynamics. 2016. |
16 | VAN DYCK R L. Seaplanes and the towing tank[C]∥ Intersociety Advanced Marine Vehicles Conference and Exhibit. Reston: AIAA, 1989. |
17 | List of flying boats and floatplanes[EB/OL]. [2024-09-03]. . |
18 | 三木鐵夫, 水上飛行機用Floatの造波状況と底面に於ける水流に就て[J]. 造船協會會報, 1933(52): 265-282. |
TETSUO M. On the wave-forming conditions and water flow at the bottom of a seaplane Float[J]. Shipbuilding Association Report, 1933(52): 265-282 (in Japanese). | |
19 | 李积德. 船舶耐波性[M]. 哈尔滨: 哈尔滨工程大学出版社,1992: 18-26. |
LI J D. Ship seakeeping[M]. Harbin: Harbin Engineering University Press, 1992: 18-26 (in Chinese). | |
20 | 陈红霞, 华锋, 袁业立. 中国近海及临近海域海浪的季节特征及其时间变化[J]. 海洋科学进展, 2006, 24(4): 407-415. |
CHEN H X, HUA F, YUAN Y L. Seasonal characteristics and temporal variations of ocean wave in the Chinese offshore waters and adjacent sea areas[J]. Advances in Marine Science, 2006, 24(4): 407-415 (in Chinese). | |
21 | 俞慕耕. 从船舶报看南海波浪的分布特点[J]. 海洋通报, 1984, 3(4): 1-8. |
YU M G. Analysing the characteristics of wave distribution in the South China Sea on the basis of ship reports[J]. Marine Science Bulletin, 1984, 3(4): 1-8 (in Chinese). | |
22 | REMINGTON W. The Canadair CL-215 amphibious aircraft: Development and applications: AIAA-1989-1541-CP[R]. Reston: AIAA, 1989. |
23 | KIKUHARA S, TOKUDA K. A new STOL flying boat design[J]. Journal of Aircraft, 1966, 3(5): 462-469. |
24 | GUDMUNDSSON S. General aviation aircraft design[M]. Oxford: Butterworth-Heinemann, 2022. |
25 | ГРУМОНДЗ В Т, ЖУРАВЛЕВ Ю Ф, ПАРЫШЕВ Э В. Гидродинамика и динамика высокоскоростного движения тел в жидкости[M]. MOCKBA HAYKA, 2013: 572. |
GRUMONDZ V T, ZHURAVLEV Y F, PARYSHEY E V. Hydrodynamics and dynamics of high-speed motion of bodies in a liquid [M]. MOCKBA HAYKA, 2013: 572 (in Russian). | |
26 | 菊原静男. 飛行艇開発の推移[J]. 日本航空宇宙学会誌, 1982, 30(341): 313-320. |
KIKUHARAS. Changes in flying boat development?[J]. Journal of the Japan Society of Astronautics, 1982, 30(341): 313-320 (in Japanese). | |
27 | PATERSON J H. Recent developments in the hydrodynamic design of flying-boats[J]. The Journal of the Royal Aeronautical Society, 1955, 59(533): 349-355. |
/
〈 |
|
〉 |