综述

AI驱动高速飞行器多学科发展知识图谱分析

  • 安凯 ,
  • 黄伟 ,
  • 王振国 ,
  • 徐小平 ,
  • 孟玉珊
展开
  • 1.国防科技大学 高超声速技术实验室,长沙 410073
    2.国防科技大学 前沿交叉学科学院,长沙 410073
.E-mail: gladrain2001@163.com

收稿日期: 2024-04-22

  修回日期: 2024-05-24

  录用日期: 2024-06-19

  网络出版日期: 2024-07-01

基金资助

国家自然科学基金(11972368);湖南省自然科学基金(2021JJ10045)

Knowledge atlas analysis of AI-driven multidisciplinary development of hypersonic aircrafts

  • Kai AN ,
  • Wei HUANG ,
  • Zhenguo WANG ,
  • Xiaoping XU ,
  • Yushan MENG
Expand
  • 1.Hypersonic Technology Laboratory,National University of Defense Technology,Changsha 410073,China
    2.College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

Received date: 2024-04-22

  Revised date: 2024-05-24

  Accepted date: 2024-06-19

  Online published: 2024-07-01

Supported by

National Natural Science Foundation of China(11972368);Natural Science Foundation of Hunan Province of China(2021JJ10045)

摘要

近年来,AI技术的不断涌现为推动高速飞行器多学科发展提供了新的求解思路和实现方法。为系统梳理高速飞行器多学科发展的研究脉络、热点和趋势,探析AI方法对高速飞行器学科发展的长远影响,首先利用CiteSpace6.3.R1以及VOSviewer1.6.20软件对2000—2024年中国知网(CNKI)和 Web of Science(WoS)数据库中的相关文献进行了调查,并对发文量、研究机构以及关键词聚类图谱等知识矩阵进行了多角度分析。然后,介绍了流场特性智能预测、无模型自适应制导与控制、偏微分方程智能求解以及知识数据融合的不确定性多学科设计优化4个热点领域的研究概况。最后,总结了AI驱动下高速飞行器学科发展新的研究趋势,强调了该领域现有的挑战,并得出以下结论: AI融合知识已成为高速飞行器多学科研究新的科技范式;深度学习方法进一步拓展了高速飞行器各学科技术理论边界和应用范围,但在精确模型建立求解以及试验应用上仍具有很大探索空间。

本文引用格式

安凯 , 黄伟 , 王振国 , 徐小平 , 孟玉珊 . AI驱动高速飞行器多学科发展知识图谱分析[J]. 航空学报, 2024 , 45(S1) : 730566 -730566 . DOI: 10.7527/S1000-6893.2024.30566

Abstract

In recent years, the development of AI technology has provided new solutions and implementation for promoting the multidisciplinary development of hypersonic aircrafts. This article analyzes the research progress, hotspots, and trends of multidisciplinary development of high-speed aircraft systematically, and explores the long-term impact of AI methods. Firstly, software CiteSpace 6.3. R1 and VOSviewer 1.6.20 are used to investigate relevant literatures in the databases of China National Knowledge Infrastructure (CNKI) and Web of Science (WoS) from 2000 to 2024, and a multi-dimensional analysis of the knowledge matrices such as the number of publications, research institutions, and keyword clustering graphs is then conducted. Based on this, the research overview of four hotspots: intelligent prediction of flow field characteristics, model-free adaptive guidance and control, intelligent applications of partial differential equations, and uncertainty multidisciplinary design optimization through knowledge data fusion is introduced. Finally, the new research trends in the development of hypersonic aircraft disciplines driven by AI are summarized, emphasizing existing challenges in this field and drawing the following conclusions: AI integrated with knowledge has become a new technological paradigm for multidisciplinary research on hypersonic aircraft; introduction of deep learning methods has further expanded the theoretical boundaries and application scope of various disciplines of high-speed aircraft, but there is still substantial room for improvement in the establishment and solution of accurate models and experimental applications.

参考文献

1 王振国, 梁剑寒, 范晓樯, 等. 吸气式高速飞行器一体化方案: 回顾与展望[J]. 空气动力学学报202341(8): 13-25.
  WANG Z G, LIANG J H, FAN X Q, et al. Integrated scheme of air-breathing high-speed aircraft: Review and prospect[J]. Acta Aerodynamica Sinica202341(8): 13-25 (in Chinese).
2 郑晓刚, 林德寿, 方啸雷, 等. 基于局部偏转吻切方法的背部进气高超飞行器一体化设计研究[J]. 空天技术2023455(5): 1-10.
  ZHENG X G, LIN D S, FANG X L, et al. Research on the integration design of hypersonic vehicles with dorsal inlets based on the local-turning osculating cones method[J]. Aerospace Technology2023455(5): 1-10 (in Chinese).
3 陈树生, 冯聪, 张兆康, 等. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报202445(6): 629596.
  CHEN S S, FENG C, ZHANG Z K, et al. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method[J]. Acta Aeronautica et Astronautica Sinica202445(6): 629596 (in Chinese).
4 侯强. 固体火箭超燃冲压发动机进排气系统设计及流场预测研究[D]. 南京: 南京航空航天大学, 2021: 1-101.
  HOU Q. Study on design of intake and exhaust system and flow field prediction of solid rocket scramjet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 1-101 (in Chinese).
5 杨超, 赵黄达, 吴志刚. 吸气式高超声速飞行器热气动弹性研究进展[J]. 北京航空航天大学学报201945(10): 1911-1923.
  YANG C, ZHAO H D, WU Z G. Research progress of aerothermoelasticity of air-breathing hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics201945(10): 1911-1923 (in Chinese).
6 郭建国, 梁乐成, 周敏, 等. 高速飞行器俯冲段制导控制一体化综述[J]. 航空兵器202330(1): 1-10.
  GUO J G, LIANG L C, ZHOU M, et al. Overview of integrated guidance and control for hypersonic vehicles in dive phase[J]. Aero Weaponry202330(1): 1-10 (in Chinese).
7 张文敏, 王剑颖. 基于智能图搜索的滑翔式高超声速飞行器路径规划方法[J]. 飞控与探测20225(6): 80-92.
  ZHANG W M, WANG J Y. Trajectory planning of hypersonic gliding vehicle based on smart graph search method[J]. Flight Control & Detection20225(6): 80-92 (in Chinese).
8 姜志杰, 韩伟, 李怡庆, 等. 基于遗传算法的高超声速飞行器多学科优化设计[J]. 南昌航空大学学报(自然科学版)202236(2): 18-23.
  JIANG Z J, HAN W, LI Y Q, et al. Genetic algorithms based multidisciplinary design optimization of hypersonic vehicle concept design[J]. Journal of Nanchang Hangkong University (Natural Sciences)202236(2): 18-23 (in Chinese).
9 杨帆, 林明月, 胡宗民, 等 .基于机器学习的高速飞行器双曲率前缘气动热预测方法[J/OL].北京航空航天大学学报,(2023-02-14) [2024-02-14]. .
  YANG F, LIN M Y, HU Z M, et al. Fast prediction method of aero-heating of bi-curvature leading edge based on the machine learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2023-02-14) [2024-02-14]. (in Chinese).
10 刘紫寒, 武鹏飞, 李响, 等. 基于Social-LSTM和在线学习的复杂飞行器仿真模型智能校正方法[C]∥第三十四届中国仿真大会暨第二十一届亚洲仿真会议论文集. 长沙: 中国仿真学会, 2022.
  LIU Z H, WU P F, LI X, et al. Intelligent correction method for complex aircraft simulation model based on social-LSTM and online learning[C]∥ Proceedings of the 34th China Simulation Conference and the 21st Asian Simulation Conference. Changsha: China Simulation Institute, 2022 (in Chinese).
11 王煜林. 基于神经网络及其可解释原理的高超声速飞行器执行机构故障诊断方法研究[D]. 上海: 上海交通大学, 2022: 1-10.
  WANG Y L. Research on fault diagnosis method of hypersonic vehicle actuator based on neural network and its interpretable principle[D]. Shanghai: Shanghai Jiao Tong University, 2022: 1-10 (in Chinese).
12 唐志共, 朱林阳, 向星皓, 等. 智能空气动力学若干研究进展及展望[J]. 空气动力学学报202341(7): 1-35.
  TANG Z G, ZHU L Y, XIANG X H, et al. Some research progress and prospect of intelligent aerodynamics[J]. Acta Aerodynamica Sinica202341(7): 1-35 (in Chinese).
13 GKIMISIS L, DIAS B, SCOGGINS J B, et al. Data-driven modeling of hypersonic reentry flow with heat and mass transfer[J]. AIAA Journal202361(8): 3269-3286.
14 ZHANG T X, CHEN J Q, ZENG F Z, et al. Improvement of transition prediction model in hypersonic boundary layer based on field inversion and machine learning framework[J]. Physics of Fluids202335(2): 024104.
15 DREYER E R, GRIER B J, MCNAMARA J J, et al. Rapid steady-state hypersonic aerothermodynamic loads prediction using reduced fidelity models[J]. Journal of Aircraft202158(3): 663-676.
16 WANG M L, LI H X, CHEN X, et al. Deep learning-based model reduction for distributed parameter systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems201646(12): 1664-1674.
17 OMATA N, SHIRAYAMA S. A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder[J]. AIP Advances20199(1): 015006.
18 FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning[J]. Journal of Fluid Mechanics2019870: 106-120.
19 WU H Z, LIU X J, AN W, et al. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils[J]. Computers & Fluids2020198: 104393.
20 KASHEFI A, REMPE D, GUIBAS L J. A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries[J]. Physics of Fluids202133(2): 027104.
21 SHEN Y, HUANG W, WANG Z G, et al. A deep learning framework for aerodynamic pressure prediction on general three-dimensional configurations[J]. Physics of Fluids202335(10): 107111.
22 LI J X, LIU T Y, WANG Y Q, et al. Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery[J]. Energy2022254: 124440.
23 ZUO K J, YE Z Y, ZHANG W W, et al. Fast aerodynamics prediction of laminar airfoils based on deep attention network[J]. Physics of Fluids202335(3): 037127.
24 黄章峰, 张宇琦. 高超声速三维边界层转捩数值研究进展及预测软件[J]. 空气动力学学报202341( 11): 1-19.
  HUANG Z F, ZHANG Y Q. Numerical research progress and prediction software of transition in hypersonic three-dimensional boundary layers[J]. Acta Aerodynamica Sinica202341( 11): 1-19 (in Chinese).
25 LIANG S, XU B, ZHANG Y M. Robust self-learning fault-tolerant control for hypersonic flight vehicle based on ADHDP[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202353(9): 5295-5306.
26 YAN T, JIANG Z J, LI T, et al. Intelligent maneuver strategy for hypersonic vehicles in three-player pursuit-evasion games via deep reinforcement learning[J]. Frontiers in Neuroscience202418: 1362303.
27 LI X, JI Y H, SONG Y, et al. Modified deep deterministic policy gradient based on active disturbance rejection control for hypersonic vehicles[J]. Neural Computing and Applications202436(8): 4071-4081.
28 HU G J, GUO J G, GUO Z Y, et al. ADP-based intelligent tracking algorithm for reentry vehicles subjected to model and state uncertainties[J]. IEEE Transactions on Industrial Informatics202319(4): 6047-6055.
29 BAO C Y, WANG P, TANG G J. Data-driven based model-free adaptive optimal control method for hypersonic morphing vehicle[J]. IEEE Transactions on Aerospace and Electronic Systems202359(4): 3713-3725.
30 MU C X, NI Z, SUN C Y, et al. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming[J]. IEEE Transactions on Neural Networks and Learning Systems201728(3): 584-598.
31 EMAMI S ALI, CASTALDI P, BANAZADEH A. Neural network-based flight control systems: Present and future[J]. Annual Reviews in Control202253: 97-137.
32 LIU Y H, WANG H L, WU T C, et al. Attitude control for hypersonic reentry vehicles: An efficient deep reinforcement learning method[J]. Applied Soft Computing2022123: 108865.
33 GABY N, ZHANG F M, YE X J. Lyapunov-net: A deep neural network architecture for Lyapunov function approximation[C]∥ 2022 IEEE 61st Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2022: 2091-2096.
34 YANG L J, DAI H K, SHI Z X, et al. Lyapunov-stable neural control for state and output feedback: A novel formulation[DB/OL]. arXiv preprint: 2404.07956, 2024.
35 RUDY S H, BRUNTON S L, PROCTOR J L, et al. Data-driven discovery of partial differential equations[J]. Science Advances20173(4): e1602614.
36 BAR-SINAI Y, HOYER S, HICKEY J, et al. Learning data-driven discretizations for partial differential equations[J]. Proceedings of the National Academy of Sciences of the United States of America2019116(31): 15344-15349.
37 RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics2019378: 686-707.
38 RAMUHALLI P, UDPA L, UDPA S S. Finite-element neural networks for solving differential equations[J]. IEEE Transactions on Neural Networks200516(6): 1381-1392.
39 ZHANG R, MENG Q, MA Z M. Deciphering and integrating invariants for neural operator learning with various physical mechanisms[J]. National Science Review202411(4): nwad336.
40 MARKIDIS S. The old and the new: Can physics-informed deep-learning replace traditional linear solvers?[J]. Frontiers in Big Data20214: 669097.
41 HAO Z K, LIU S M, ZHANG Y C, et al. Physics-informed machine learning: A survey on problems, methods and applications[DB/OL]. arXiv preprint: 2211.08064, 2022.
42 CHIU P H, WONG J C, OOI C, et al. CAN-PINN: A fast physics-informed neural network based on coupled-automatic-numerical differentiation method[J]. Computer Methods in Applied Mechanics and Engineering2022395: 114909.
43 KHARAZMI E, ZHANG Z, KARNIADAKIS G E. Variational physics-informed neural networks for solving partial differential equations[DB/OL]. arXiv preprint1912.00873, 2019.
44 ZANG Y H, BAO G, YE X J, et al. Weak adversarial networks for high-dimensional partial differential equations[J]. Journal of Computational Physics2020411: 109409.
45 E W, YU B. The deep ritz method: A deep learning-based numerical algorithm for solving variational problems[J]. Communications in Mathematics and Statistics20186(1): 1-12.
46 MOSELEY B, MARKHAM A, NISSEN-MEYER T. Finite basis physics-informed neural networks (FBPINNs): A scalable domain decomposition approach for solving differential equations[J]. Advances in Computational Mathematics202349(4): 62.
47 WANG S F, WANG H W, PERDIKARIS P. On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering2021384: 113938.
48 DESAI S, MATTHEAKIS M, JOY H, et al. One-shot transfer learning of physics-informed neural networks[DB/OL]. arXiv preprint: 2110.11286, 2021.
49 CHAKRABORTY S. Transfer learning based multi-fidelity physics informed deep neural network[J]. Journal of Computational Physics2021426: 109942.
50 PSAROS A F, KAWAGUCHI K, KARNIADAKIS G E. Meta-learning PINN loss functions[J]. Journal of Computational Physics2022458: 111121.
51 LIU X, ZHANG X Y, PENG W, et al. A novel meta-learning initialization method for physics-informed neural networks[J]. Neural Computing and Applications202234(17): 14511-14534.
52 王嘉钰,颜力,安凯,等. 高超声速飞行器不确定性多学科设计优化综述[J]. 空天技术2022 (6): 1-11.
  WANG J Y, YAN L, AN K, et al. Review of uncertainty-based multidisciplinary design optimization for hypersonic vehicles[J]. Aerospace Technology2022, (6): 1-11 (in Chinese).
53 LAI Z Q, WEI K X, FU Y, et al. ?-prox: Differentiable proximal algorithm modeling for large-scale optimization[J]. ACM Transactions on Graphics202342(4): 1-19.
54 BREVAULT L, BALESDENT M, MORIO J. 航空航天系统不确定性分析与优化[M]. 岳程斐, 吴凡, 沈强, 译. 北京: 国防工业出版社, 2023.
  BREVAULT L, BALESDENT M, MORIO J. Aerospace system analysis and optimization in uncertainty[M]. YUE C F, WU F, SHEN W,translated. Beijing: National Defense Industry Press, 2023 (in Chinese).
55 陈小前, 姚雯, 赵勇, 等. 飞行器多学科设计优化理论与应用研究[M]. 2版. 北京: 国防工业出版社, 2023.
  CHEN X Q, YAO W, ZHAO Y. Multidisciplinary design optimization of flight vehicles theory and applications[M]. 2nd ed. Beijing: National Defense Industry Press, 2023 (in Chinese).
56 ZHOU T, PENG Y B. Gaussian process regression based on deep neural network for reliability analysis in high dimensions[J]. Structural and Multidisciplinary Optimization202366(6): 131.
57 WU P, YUAN W Y, JI L L, et al. Missile aerodynamic shape optimization design using deep neural networks[J]. Aerospace Science and Technology2022126: 107640.
58 ZHU Y Y, PAN M X, ZHOU W X, et al. Intelligent direct thrust control for multivariable turbofan engine based on reinforcement and deep learning methods[J]. Aerospace Science and Technology2022131: 107972.
59 GENG X, LIU P Q, HU T X, et al. Multi-fidelity optimization of a quiet propeller based on deep deterministic policy gradient and transfer learning[J]. Aerospace Science and Technology2023137: 108288.
60 FUJIO C, OGAWA H. Deep-learning prediction and uncertainty quantification for scramjet intake flowfields[J]. Aerospace Science and Technology2022130: 107931.
61 陈良臣, 傅德印. 面向小样本数据的机器学习方法研究综述[J]. 计算机工程202248(11): 1-13.
  CHEN L C, FU D Y. Survey on machine learning methods for small sample data[J]. Computer Engineering202248(11): 1-13 (in Chinese).
文章导航

/