可靠性科学实验
收稿日期: 2024-12-06
修回日期: 2024-12-10
录用日期: 2024-12-13
网络出版日期: 2024-12-18
基金资助
国家自然科学基金(51775020)
Reliability science experiments
Received date: 2024-12-06
Revised date: 2024-12-10
Accepted date: 2024-12-13
Online published: 2024-12-18
Supported by
National Natural Science Foundation of China(51775020)
通过追溯可靠性实验的发展起源,指出了现有以故障时间概率分布为核心的可靠性研究范式的历史局限性,即仅适用于有故障观测数据的情况,而对创新产品的研发束手无策。具体表现在,可靠性指标具有小样本、动态性、属人性特征,而质量特征却是大样本的、静态的、客观的,因此传统可靠性统计试验错误的使用了质量管理中概率抽样验收方法;而加速寿命试验和加速退化试验,由于采用基于微观失效物理构建的经验性加速模型使得试验方法并不适用于真正具有功能的系统级产品。为此,从可靠性科学原理的角度分析了以验证因果规律为目标的可靠性科学实验的存在性,进而定义了可靠性实验为旨在验证系统裕量与性能和性能要求之间的机会因果规律的受控实验,并分析了包括规律清晰性、黑箱认识论和机会因果律在内的可靠性实验的内涵,在此基础上给出了可靠性实验方法的基本原则:系统综合、分类判别和优化均衡。进一步的,基于可靠性实验原理,构建了以模型为核心的可靠性时空验证与测试体系,展示了该体系才是唯一能够从可靠性特征内涵出发,同时满足工程需求的可靠性验证与测试方法。最后,探讨了可靠性科学实验的使用范围,提出了可靠性时空验证与测试体系的发展设想。
康锐 , 李晓阳 . 可靠性科学实验[J]. 航空学报, 2025 , 46(5) : 531622 -531622 . DOI: 10.7527/S1000-6893.2024.31622
This article reviews the development history of reliability testing, and points out the historical limitations of the existing reliability research paradigm, which is centered on the probability distribution of failure time. This paradigm is only applicable in situations with failure observation data and proves ineffective for the development of innovative products. Specifically, reliability indicators exhibit characteristics of small samples, dynamic behavior, and subjectivity, while quality characteristics are large-sample, static, and objective. Consequently, traditional reliability statistical testing has erroneously adopted the probability sampling acceptance methods for quality management. Moreover, accelerated life testing and accelerated degradation testing, due to their reliance on empirical acceleration models based on failure physics in micro dimensions, are not suitable for true system-level products with function requirements. This paper analyzes the necessity of reliability science experiments aimed at validating causal laws from the perspective of reliability science principles. Reliability experiments are then defined as controlled experiments intended for verification of opportunity causation laws between system margins and performance and performance requirements. The connotations of reliability experiments, including the clarity of laws, black-box epistemology, and opportunity causation, are explored, and fundamental principles for reliability experimental methods—system integration, classification judgement, and optimization equilibrium—are proposed. Furthermore, a model-centered spatiotemporal reliability verification and testing system is established based on the principles of reliability experiments, demonstrating that this system is the only one that is derived based on the connotation of reliability characteristic and meets engineering demands. Finally, the scope of application of reliability scientific experiments is discussed, and developmental ideas for the spatiotemporal reliability verification and testing system are proposed.
1 | DAVIS D J. An analysis of some failure data[J]. Journal of the American Statistical Association, 1952, 47(258): 113-150. |
2 | KNIGHT C R, JERVIS E R, HERD G R. The definition of terms of interest in the study of reliability[J]. IRE Transactions on Reliability and Quality Control, 1955, PGRQC-5: 34-56. |
3 | 康锐. 确信可靠性理论与方法[M]. 北京: 国防工业出版社, 2020: 1-27. |
KANG R. Belief reliability theory and methodology[M]. Beijing: National Defense Industry Press, 2020: 1-27 (in Chinese). | |
4 | KAMINS M. Planned replacement[J]. Management Science, 1962, MT-2(1): 59-69. |
5 | EQUIPMENT U S A G O R O E. Reliability of military electronic equipment[R]. Washington, D.C.: U.S. Government Printing Office, 1957. |
6 | NEATHAMMER R D, PABST W R Jr, WIGGINTON C G. MIL-STD-781B reliability tests: Exponential distribution[J]. Journal of Quality Technology, 1969, 1(1): 58-67. |
7 | 李晓阳. 加速退化试验: 不确定性量化与控制[M]. 北京: 国防工业出版社, 2022: 154-180. |
LI X Y. Accelerated degradation testing: Quantification and control of uncertainties[M]. Beijing: National Defense Industry Press, 2022: 154-180 (in Chinese). | |
8 | ZHANG J T, ZHANG Q Y, KANG R. Reliability is a science: A philosophical analysis of its validity[J]. Applied Stochastic Models in Business and Industry, 2019, 35(2): 275-277. |
9 | KNIGHT C R. Four decades of reliability progress[C]∥Annual Reliability and Maintainability Symposium. Piscataway: IEEE Press, 1991: 156-160. |
10 | EBEL G H. Reliability physics in electronics: A historical view[J]. IEEE Transactions on Reliability, 1998, 47(3): SP379-SP389. |
11 | MCLINN J. A short history of reliability[R]. Hanover: Rel Tech Group, 2010. |
12 | CHERNOFF H. Optimal accelerated life designs for estimation[J]. Technometrics, 1962, 4(3): 381-408. |
13 | WEIBULL W. A statistical theory of the strength of materials[C]. 1939 . |
14 | NELSON W B. A bibliography of accelerated test plans[J]. IEEE Transactions on Reliability, 2005, 54(2): 194-197. |
15 | NELSON W.Accelerated testing: Statistical models, test plans, and data analysis[M]. New York: Wiley-Interscience, 2004: 493-544. |
16 | MEEKER W Q, ESCOBAR L A. Statistical methods for reliability data[M]. New York: John Wiley & Sons, 1998: 522-529. |
17 | NELSON W. Analysis of performance-degradation data from accelerated tests[J]. IEEE Transactions on Reliability, 1981, R-30(2): 149-155. |
18 | CAREY M B, KOENIG R H. Reliability assessment based on accelerated degradation: A case study[J]. IEEE Transactions on Reliability, 1991, 40(5): 499-506. |
19 | 姜同敏. 可靠性与寿命试验[M]. 北京: 国防工业出版社, 2012: 303-355. |
JIANG T M. Reliability and life test[M]. Beijing: National Defense Industry Press, 2012: 303-355 (in Chinese). | |
20 | SONG K, CUI L R. Fiducial inference-based failure mechanism consistency analysis for accelerated life and degradation tests[J]. Applied Mathematical Modelling, 2022, 105: 340-354. |
21 | ZHAI G F, ZHENG B K, YE X R, et al. A failure mechanism consistency test method for accelerated degradation test[J]. Quality and Reliability Engineering International, 2021, 37(2): 464-483. |
22 | WANG H, ZHAO Y, MA X B, et al. Equivalence analysis of accelerated degradation mechanism based on stochastic degradation models[J]. Quality and Reliability Engineering International, 2017, 33(8): 2281-2294. |
23 | 康锐, 王自力. 可靠性系统工程理论研究回顾与展望[J]. 航空学报, 2022, 43(10): 527505. |
KANG R, WANG Z L. Reliability systems engineering: A research review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527505 (in Chinese). | |
24 | 钱学森, 许国志, 王寿云. 组织管理的技术—系统工程 [Z]. 文汇报. 1978. |
QIAN X S, XU G Z, WANG S Y. Qrganization management technology—Systems engineering[Z]. Wen Hui Bao, 1978 (in Chinese). | |
25 | 许国志. 系统科学[M]. 上海: 上海科技教育出版社, 2000: 17-39. |
XU G Z. Systems science[M]. Shanghai: Shanghai Scientific & Technological Education Publishing House, 2000: 17-39 (in Chinese). | |
26 | 苗东升. 系统科学精要[M]. 4版. 北京: 中国人民大学出版社, 2016: 20-38. |
MIAO D S. Essentials of systems science[M]. 4th ed. Beijing: China Renmin University Press, 2016: 20-38 (in Chinese). | |
27 | GNEDENKO B V, BELYAYEV Y K, SOLOVYEV A D. Characteristics of reliability[M]∥Mathematical Methods of Reliability Theory. Amsterdam: Elsevier, 1969: 69-142. |
28 | ZHANG Q Y, LI X Y, ZU T P, et al. Belief reliability: A scientific exploration of reliability engineering[J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 619-643. |
29 | 吴金闪. 系统科学导引-第Ⅰ卷-系统科学概论[M]. 北京: 科学出版社, 2018: 9-14. |
WU J S. Introduction to system science-volume I-introduction to system science[M]. Beijing: Science Press, 2018: 9-14 (in Chinese). | |
30 | 张清源, 文美林, 康锐, 等. 基于确信可靠性的功能、性能与裕量分析方法[J]. 系统工程与电子技术, 2021, 43(5): 1413-1419. |
ZHANG Q Y, WEN M L, KANG R, et al. Systems engineering and electronics, 2021, 43(5): 1413-1419 (in Chinese). | |
31 | 金观涛, 华国凡. 控制论与科学方法论[M]. 北京: 新星出版社, 2005: 170-202. |
JIN G T, HUA G F. Cybernetics and scientific methodology[M]. Beijing: New Star Press, 2005: 170-202 (in Chinese). | |
32 | LI X Y, CHEN W B, KANG R. Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear[J]. Reliability Engineering & System Safety, 2021, 205: 107234. |
33 | TAO Z, CHEN W B, LI X Y, et al. Reliability modelling and assessment of CMOS image sensor under radiation environment[J]. Chinese Journal of Aeronautics, 2024, 37(9): 297-311. |
34 | LI X Y, LIU Y, LIN Y H, et al. A generalized petri net-based modeling framework for service reliability evaluation and management of cloud data centers[J]. Reliability Engineering & System Safety, 2021, 207: 107381. |
35 | CHEN S S, LI X Y, LI B Y, et al. Belief reliability modeling and analysis for the three-grid ion thruster[C]∥ 2021 5th International Conference on System Reliability and Safety (ICSRS). Piscataway: IEEE Press, 2021: 58-65. |
/
〈 |
|
〉 |