城市环境下固定翼无人机微分平坦时空分层轨迹规划

  • 李俊志 ,
  • 龙腾 ,
  • 孙景亮 ,
  • 苗洪语 ,
  • 周桢林
展开
  • 1. 北京理工大学
    2. 北京理工大学宇航学院

收稿日期: 2024-10-09

  修回日期: 2024-12-11

  网络出版日期: 2024-12-18

基金资助

北京理工大学青年教师学术启动计划;国家杰出青年科学基金项目

Differential Flatness-based Spatial-temporal Hierarchical Trajectory Optimization for Fixed-wing UAVs in Urban Environments

  • LI Jun-Zhi ,
  • LONG Teng ,
  • SUN Jing-Liang ,
  • MIAO Hong-Yu ,
  • ZHOU Zhen-Lin
Expand

Received date: 2024-10-09

  Revised date: 2024-12-11

  Online published: 2024-12-18

摘要

针对城市环境非规则障碍密布与固定翼无人机动力学强非线性等因素导致轨迹规划效率低、安全性难保证的问题,开展基于微分平坦的固定翼无人机时空分层轨迹规划方法研究。构建了“路径引导-走廊约束-轨迹优化”分层规划框架:通过启发式图搜索规划复杂障碍环境下的可行路径,引导区域膨胀迭代快速生成安全飞行走廊,高效确定轨迹初值与可行域;建立了固定翼无人机的微分平坦轨迹时空参数化模型,将轨迹规划问题转换为求解广义时空变量,消除非线性动力学、始末终端、安全走廊等约束,降低问题复杂度;通过定制飞行性能约束罚函数和推导解析梯度,将轨迹规划问题转化为梯度解析的无约束非线性优化问题;提出了基于微分平坦的时空分层轨迹规划算法,实现飞行轨迹的快速求解。仿真结果表明,所提方法能够在复杂城市障碍环境下快速生成安全的飞行轨迹,求解耗时在10-2 s~10-1 s量级,满足轨迹规划的在线求解需求。

本文引用格式

李俊志 , 龙腾 , 孙景亮 , 苗洪语 , 周桢林 . 城市环境下固定翼无人机微分平坦时空分层轨迹规划[J]. 航空学报, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2024.31369

Abstract

In the complex urban environments, owing to the presence of dense, irregular obstacles and the strong nonlinear dy-namics, the trajectory planning for fixed-wing UAVs poses significant challenges of safety risks and low solving effi-ciency. To address these issues, this paper investigates a spatial-temporal hierarchical trajectory planning method for fixed-wing UAVs based on differential flatness. A hierarchical planning framework of “path planning, safe corridors generation and trajectory optimization” is constructed. Firstly, the heuristic graph search is utilized to obtain the refer-ence path as the initial motion. Guided by the path planning results, the safe flight corridors are generated through the iterative regional inflation method, providing feasible regions for trajectory optimization. Subsequently, to reduce the complexity of trajectory optimization, a differential flatness-based spatial-temporal trajectory parameterization model for fixed-wing UAVs is established, enabling the elimination of nonlinear dynamics, terminal and safety constraints. Additionally, through designing penalty costs to handle flight performance constraints, the original problem is trans-formed into an unconstrained nonlinear optimization problem with analytical gradients. Finally, a differential flatness-based spatial-temporal hierarchical trajectory planning algorithm (STH-DFTO) is proposed to achieve efficient trajecto-ry optimization. The simulation results illustrate that the proposed STH-DFTO has the superior efficiency, which only takes 10-2-10-1 s to generate the flight trajectories for fixed-wing UAVs in complex urban environments, meeting the requirements for online trajectory planning in practice.

参考文献

[1] 通用航空装备创新应用实施方案(2024-2030年)[R]. 中国: 北京, 2024: 1-9.
General aviation equipment innovation and application implementation plan (2024-2030)[R]. In: Beijing, China. 2024: 1-9 (in Chinese).
[2] Mohsan S A H, Khan M A, Noor F, et al. Towards the unmanned aerial vehicles (UAVs): a comprehensive review[J]. Drones, 2022, 6(6): 147.
[3] Mir I, Gul F, Mir S, et al. A survey of trajectory planning techniques for autonomous systems[J]. Electronics, 2022, 11(18): 2801.
[4] Lin X, Wang C, Wang K, et al. Trajectory planning for unmanned aerial vehicles in complicated urban environments: A control network approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103120.
[5] 徐广通, 王祝, 曹严, 等. 动态优先级解耦的无人机集群轨迹分布式序列凸规划[J]. 航空学报, 2022, 43(2): 420-431.
Xu G, Wang Z, Cao Y, et al. Dynamic priority decoupled UAV swarm trajectory planning using distributed sequential convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 420-431 (in Chinese).
[6] Huang G, Lu Y, Nan Y. A survey of numerical algorithms for trajectory optimization of flight vehicles[J]. Science China Technological Sciences, 2012, 55(9): 2538-2560.
[7] Zhang G, Kuang H, Liu X. Fast trajectory optimization for quadrotor landing on a moving platform[C]. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS). Athens, Greece: IEEE, 2020: 238-246.
[8] Sun J, Xu G, Wang Z, et al. Safe flight corridor constrained sequential convex programming for efficient trajectory generation of fixed-wing UAVs[J]. Chinese Journal of Aeronautics, 2024: S1000936124003078.
[9] Wang Z, Zhou X, Xu C, et al. Geometrically constrained trajectory optimization for multicopters[J]. IEEE Transactions on Robotics, 2022, 38(5): 3259-3278.
[10] Jesus Tordesillas, Jonathan P. How. MADER: trajectory planner in multiagent and dynamic environments[J]. IEEE Transactions on Robotics, 2022, 38(1): 463-476.
[11] Deits R, Tedrake R. Efficient mixed-integer planning for UAVs in cluttered environments[C]. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015: 42-49.
[12] Liu S, Watterson M, Mohta K, et al. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1688-1695.
[14] Patterson M A, Rao A V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2014, 41(1): 1-37.
[15] Houska B, Ferreau H J, Diehl M. ACADO toolkit—An open‐source framework for automatic control and dynamic optimization[J]. Optimal Control Applications and Methods, 2011, 32(3): 298-312.
[16] Barry A J, Jenks T, Majumdar A, et al. Flying between obstacles with an autonomous knife-edge maneuver[C]. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). 2014: 2559-2559.
[17] Xu G, Long T, Wang Z, et al. Trust-region filtered sequential convex programming for multi-UAV trajectory planning and collision avoidance[J]. ISA Transactions, 2022, 128: 664-676.
[18] 王祝, 徐广通, 龙腾. 基于定制内点法的多无人机协同轨迹规划[J]. 自动化学报, 2023, 49(11): 2374-2385.
Wang Z, Xu G, Long T. Customized interior-point method for cooperative trajectory planning of multiple unmanned aerial vehicles[J]. Acta Automatica Sinica, 2023, 49(11): 2374-2385 (in Chinese).
[19] Fliess M, LéVine J, Martin P, et al. Flatness and defect of nonlinear systems: introductory theory and examples[J]. International Journal of Control, 1995, 61(6): 1327-1361.
[20] D. Mellinger, V. Kumar. Minimum snap trajectory generation and control for quadrotors[C]. In: 2011 IEEE International Conference on Robotics and Automation. 2011: 2520-2525.
[21] Jesus Tordesillas, Lopez Brett T, Michael Everett, et al. FASTER: fast and safe trajectory planner for navigation in unknown environments[J]. IEEE Transactions on Robotics, 2022, 38(2): 922-938.
[22] Duan D, Zu R, Yu T, et al. Differential flatness-based real-time trajectory planning for multihelicopter cooperative transportation in crowded environments[J]. AIAA Journal, 2023, 61(9): 4079-4095.
[23] Han Z, Wu Y, Li T, et al. An efficient spatial-temporal trajectory planner for autonomous vehicles in unstructured environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(2): 1797-1814.
[24] Bry A, Richter C, Bachrach A, et al. Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments[J]. The International Journal of Robotics Research, 2015, 34(7): 969-1002.
[25] Li J, Sun J, Long T, et al. Differential flatness-based fast trajectory planning for fixed-wing unmanned aerial vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024(Manuscript under review).
[26] Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1-3): 503-528.
[27] Aljumaily H, Laefer D F, Cuadra D, et al. Point cloud voxel classification of aerial urban LiDAR using voxel attributes and random forest approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103208.
[28] Deits R, Tedrake R. Computing large convex regions of obstacle-free space through semidefinite programming[M]. In: Akin H L, Amato N M, Isler V, et al., eds. Algorithmic Foundations of Robotics XI: Vol. 107. Cham: Springer International Publishing, 2015: 109-124.
[29] Domahidi A, Chu E, Boyd S. ECOS: An SOCP solver for embedded systems[C]. In: 2013 European Control Conference (ECC). 2013: 3071-3076.
文章导航

/