综述

叶片源项模型的研究回顾与进展

  • 周芳 ,
  • 王庆勇 ,
  • 秦宇奇 ,
  • 张博涛 ,
  • 王掩刚
展开
  • 1.西北工业大学 动力与能源学院,西安 710129
    2.太行实验室,成都 610299
.E-mail: wyg704@nwpu.edu.cn

收稿日期: 2024-09-10

  修回日期: 2024-10-15

  录用日期: 2024-12-05

  网络出版日期: 2024-12-18

基金资助

太行实验室项目(A2053)

Review and progress of research on blade source term model

  • Fang ZHOU ,
  • Qingyong WANG ,
  • Yuqi QIN ,
  • Botao ZHANG ,
  • Yangang WANG
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China
    2.Taihang Laboratory,Chengdu 610299,China
E-mail: wyg704@nwpu.edu.cn

Received date: 2024-09-10

  Revised date: 2024-10-15

  Accepted date: 2024-12-05

  Online published: 2024-12-18

Supported by

Taihang Laboratory Project (A2053)

摘要

随着分布式推进系统与飞行器在结构和气动方面耦合深度的加强,平衡计算精度与效率的叶片源项模型在分布式布局的内外流耦合分析、优化中的作用日益重要。系统地梳理了现有的针对压气机、风扇、螺旋桨等叶片源项模型的基本逻辑、实现路径以及应用成效,为开展分布式推进系统内外流耦合分析过程中的叶片源项模型选择提供支持。首先,回顾总结了基于激励盘模型的描述型和迭代型体积力方法的应用与发展,讨论了Hough-Ordway模型及其改进思路,分析了势流-黏流耦合和基于叶素动量理论(BEMT)耦合的迭代计算策略;其次,梳理了基于Marble体积力模型的分析模式和提取模式体积力模型的应用与发展,讨论了分析模式下的Gong模型、Hall模型以及基于其改进的Gong-Thollet模型和Hall-Thollet模型;随后,探讨了基于流线曲率法或雷诺平均Navier-Stoke(RANS)方程计算结果的Turbine Engine Analysis Compressor Code(TEACC)、Kiwada及Chima等提取模式的体积力模型。最后,对所收集整理的叶片源项模型进行了对比分析,给出了应用叶片源项模型进行旋转式叶轮机械数值分析过程中的具体建议,为进行平衡计算精度和效率的内外流一体化分析提供参考。

本文引用格式

周芳 , 王庆勇 , 秦宇奇 , 张博涛 , 王掩刚 . 叶片源项模型的研究回顾与进展[J]. 航空学报, 2025 , 46(10) : 31178 -031178 . DOI: 10.7527/S1000-6893.2024.31178

Abstract

With the enhancement of the coupling depth between the distributed propulsion system and the aircraft in terms of structure and aerodynamics, the blade source term model that balances calculation accuracy and efficiency plays an increasingly important role in the analysis and optimization of the internal and external flow coupling of the distributed layout. This paper systematically reviews the basic logic, implementation path and application results of the existing blade source term models for compressors, fans, propellers, etc., and provides support for the selection of blade source term models in the process of internal and external flow coupling analysis of distributed propulsion systems. Firstly, the applications and development of the descriptive and iterative body force methods based on the actuator disk model are reviewed and summarized. The Hough-Ordway model and its improvement ideas are discussed. The potential flow-viscous flow coupling and the iterative calculation strategy based on Blade Element Momentum Theory (BEMT) coupling are analyzed. Secondly, the applications and development of the analysis mode and the extraction mode body force model based on the Marble body force model are sorted out. The Gong model, the Hall model, and the improved Gong-Thollet model and Hall-Thollet model based on the analysis mode are discussed. Subsequently, the body force models of Turbine Engine Analysis Compressor Code (TEACC), Kiwada and Chima, which directly extract the blade source terms from the flow field data by using the streamline curvature method and the Reynolds-Averaged Navier-Stokes (RANS) equation calculation results, are discussed. Finally, the collected blade source term models are compared and analyzed, and specific suggestions for the applications of blade source term models in numerical analysis of rotating turbomachinery are given, which provides a reference for the integrated analysis of internal and external flow for balancing calculation accuracy and efficiency.

参考文献

1 NASA. Strategic implementation plan: 2017 update[R]. Washington, D.C.: NASA, 2017.
2 KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]?∥2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-21.
3 达兴亚, 范召林, 熊能, 等. 分布式边界层吸入推进系统的建模与分析[J]. 航空学报201839(7): 122048.
  DA X Y, FAN Z L, XIONG N, et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica201839(7): 122048 (in Chinese).
4 张阳, 周洲, 郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报202142(9): 224977.
  ZHANG Y, ZHOU Z, GUO J H. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica202142(9): 224977 (in Chinese).
5 GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences201147(5): 369-391.
6 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报202142(3): 624037.
  HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(3): 624037 (in Chinese).
7 SCHILTGEN B T, FREEMAN J. Aeropropulsive interaction and thermal system integration within the ECO-150: a turboelectric distributed propulsion airliner with conventional electric machines[C]∥16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016.
8 ZACHARIADIS A, HALL C A. Application of a navier-stokes solver to the study of open rotor aerodynamics[J]. Journal of Turbomachinery2011133(3): 031025.
9 SATO S, SPOTTS N, GAO X F. Validation of fan source term model constructed without blade geometry[C]?∥AIAA SciTech 2019 Forum. Reston: AIAA, 2019.
10 JOO W G, HYNES T P. The simulation of turbomachinery blade rows in asymmetric flow using actuator disks[J]. Journal of Turbomachinery1997119(4): 723-732.
11 RANKINE W M J. On the mechanical principles of the action of propellers[J]. Transactions of the Institute of Naval Architects18656: 13-39.
12 FROUDE R E. On the part played in propulsion by differences of fluid pressure [J]. Transactions of the Institute of Naval Architects188930: 390-405.
13 BETZ A. Eine erweiterung der schraubenstrahl theorie [J]. Zeitschrift für Flugtechnik und Motorluftschiffahrt192011: 105-110.
14 GLAUERT H. Airplane propellers[M]?∥Aerodynamic Theory. Berlin, Heidelberg: Springer, 1935: 169-360.
15 LI S L, LIU C G, CHU X M, et al. Ship maneuverability modeling and numerical prediction using CFD with body force propeller[J]. Ocean Engineering2022264: 112454.
16 CAI B A, MAO X F, XU Q, et al. Simulation of the interaction between ship and ducted propeller with a modified body force method[J]. Ocean Engineering2022249: 110950.
17 WANG H T, XIANG X B, XIANG G, et al. An improved body force method for simulation of self-propulsion AUV with ducted propeller[J]. Ocean Engineering2023281: 114731.
18 JIN Z H, WANG P, DONG H C, et al. Numerical prediction of ducted propeller performance based on a BEM-RANS coupling method[J]. Ocean Engineering2023271: 113761.
19 朱翀. 风力机尾流流场的数值模拟[D]. 南京: 南京航空航天大学, 2012.
  ZHU C. Numerical simulation of wind turbine wake flow field?[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
20 段旭鹏, 孙卫平, 魏猛, 等. 基于OpenFOAM的水陆两栖飞机水面高速滑行研究[J]. 航空学报201940(1): 522330.
  DUAN X P, SUN W P, WEI M, et al. Numerical simulation of amphibious aircraft taxiing at high speed on water using OpenFOAM[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522330 (in Chinese).
21 FU H, MICHAEL T J, CARRICA P M. A method to perform self-propulsion computations with a simplified body-force propeller model?[C]?∥Proceedings of the Twenty-Fifth International Ocean and Polar Engineering Conference, 2015: 968-988.
22 KINACI O K, DELEN C, BITIRGEN R, et al. Free-running tests for DTC self-propulsion─An investigation of lateral forces due to the rudder and the propeller[J]. Applied Ocean Research2021116: 102877.
23 MARBLE F E. Three-dimensional flow in turbomachines, aerodynamics of turbines and compressors [M]. Princeton: Princeton University Press, 1964, 83-166.
24 杨晨. 燃气轮机整机通流模型及其模拟技术研究[D]. 西安: 西北工业大学, 2020.
  YANG C. Research on throughflow model and simulation methodology for full gas turbine engines[D]. Xi’an: Northwestern Polytechnical University, 2020 (in Chinese).
25 HE C, MA Y F, LIU X H, et al. Aerodynamic instabilities of swept airfoil design in transonic axial-flow compressors[J]. AIAA Journal201856(5): 1878-1893.
26 SUN X F, LIU X H, HOU R W, et al. A general theory of flow-instability inception in turbomachinery[J]. AIAA Journal201351(7): 1675-1687.
27 屠宝锋. 风扇/压气机动态失速过程和多尺度非定常气动稳定性研究[D]. 南京: 南京航空航天大学, 2009.
  TU B F. Dynamic stall inception and multi-scale unsteady aerodynamic stability investigation of fan/compressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese).
28 GONG Y F, TAN C S, GORDON K A, et al. A computational model for short-wavelength stall inception and development in multistage compressors[J]. Journal of Turbomachinery1999121(4): 726-734.
29 HALE A, O’BRIEN W. A three-dimensional Turbine Engine Analysis Compressor Code (TEACC) for steady-state inlet distortion[J]. Journal of Turbomachinery1998120(3): 422-430.
30 GONG Y F. A computational model for rotating stall and inlet distortions in multistage compressors?[D]. Cambridge: Massachusetts Institute of Technology, 1999.
31 CHIMA R V. A three-dimensional unsteady CFD model of compressor stability?[C]?∥Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2008: 1157-1168.
32 KIWADA G. Development of a body force description for compressor stability assessment[D]. Cambridge: Massachusetts Institute of Technology, 2008: 20-40.
33 HOUGH G, ORDWAY D. The generalized actuator disk[C]?∥Second Southeastern Conference on Theoretical and Applied Mechanics, 1964: 1-36.
34 REISSNER H. On the vortex theory of the screw propeller[J]. Journal of the Aeronautical Sciences19375(1): 1-7.
35 ZHANG Z R. Verification and validation for RANS simulation of KCS container ship without/with propeller[J]. Journal of Hydrodynamics, Ser B, 201022(5): 889-896.
36 吴召华, 陈作钢, 代燚. 基于体积力法的船体自航性能数值预报[J]. 上海交通大学学报201347(6): 943-949.
  WU Z H, CHEN Z G, DAI Y. Numerical prediction of self-propulsion with a body-force propeller model[J]. Journal of Shanghai Jiao Tong University201347(6): 943-949 (in Chinese).
37 LEE S H, PAIK K J, HWANG H S, et al. A study on ship performance in waves using a RANS solver, part 1: Comparison of power prediction methods in regular waves[J]. Ocean Engineering2021227: 108900.
38 ORTOLANI F, DUBBIOSO G. Experimental investigation of blade and propeller loads: Steady turning motion[J]. Applied Ocean Research201991: 101874.
39 LIU H R, ZHAO X Y, ZHOU F, et al. Aero-propulsion analysis of distributed ducted-fan propulsion based on lifting-line driven body-force model[J]. Chinese Journal of Aeronautics202438(2): 103126.
40 YU J W, YAO C B, LIU L W, et al. Assessment of full-scale KCS free running simulation with body-force models[J]. Ocean Engineering2021237: 109570.
41 VILLA D, VIVIANI M, TANI G, et al. Numerical evaluation of rudder performance behind a propeller in bollard pull condition[J]. Journal of Marine Science and Application201817(2): 153-164.
42 VILLA D, FRANCESCHI A, VIVIANI M. Numerical analysis of the rudder-propeller interaction[J]. Journal of Marine Science and Engineering20208(12): 990.
43 STERN F, KIM H T, PATEL V C, et al. A viscous-flow approach to the computation of propeller-hull interaction[J]. Journal of Ship Research198832(4): 246-262.
44 KERWIN J, LEE C. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory[J]. The Japan Society of Naval Architects and Marine Engineers197886: 1-30.
45 GUO C Y, WANG X, WANG C H, et al. Research on calculation methods of ship model self-propulsion prediction[J]. Ocean Engineering2020203: 107232.
46 ZHANG D H. A method for computing stern flows with an operating propeller[J]. Royal Institute of Naval Architects Transactions1992134: 235-250.
47 LEE S K, CHEN H C. A coupled RANS/VLM approach for multi-component propulsor analysis?[C]?∥SNAME 10th Propeller and Shafting Symposium, 2003: 85-103.
48 SIMONSEN C, STERN F. RANS maneuvering simulation of Esso Osaka with rudder and a body-force propeller[J]. Journal of Ship Research201749(2): 98-120.
49 VILLA D, GAGGERO S, BRIZZOLARA S. Ship self propulsion with different CFD methods: From actuator disk to viscous inviscid unsteady coupled solvers[C]?∥10th International Conference on Hydrodynamics, 2012: 1-9.
50 GAGGERO S, VILLA D, VIVIANI M. An extensive analysis of numerical ship self-propulsion prediction via a coupled BEM/RANS approach[J]. Applied Ocean Research201766: 55-78.
51 RAJAGOPALAN R. Three dimensional analysis of a rotor in forward flight[C]?∥20th Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston: AIAA, 1989.
52 BERGMANN O, G?TTEN F, BRAUN C, et al. Comparison and evaluation of blade element methods against RANS simulations and test data[J]. CEAS Aeronautical Journal202213(2): 535-557.
53 BENINI E. Significance of blade element theory in performance prediction of marine propellers[J]. Ocean Engineering200431(8-9): 957-974.
54 ROSEN A, GUR O. Novel approach to axisymmetric actuator disk modeling[J]. AIAA Journal200846(11): 2914-2925.
55 BONTEMPO R, MANNA M. Analysis and evaluation of the momentum theory errors as applied to propellers[J]. AIAA Journal201654(12): 3840-3848.
56 SPINNER S, TROST M, SCHNELL R. An overview of high fidelity CFD engine modeling[C]?∥AIAA SciTech 2022 Forum. Reston: AIAA, 2022.
57 SPINNER S, KELLER D, SCHNELL R, et al. A blade element theory based actuator disk methodology for modeling of fan engines in RANS simulations?[C]?∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
58 FENG D K, YU J W, HE R, et al. Improved body force propulsion model for ship propeller simulation[J]. Applied Ocean Research2020104: 102328.
59 TOKGOZ E, KURODA K, WIN Y N, et al. A new method to predict the propeller body-force distribution for modeling the propeller in viscous CFD code without potential flow code[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers201419: 1-7.
60 WIN Y N, TOKGOZ E, WU P C, et al. Computation of propeller-hull interaction using simple body-force distribution model around series 60 CB = 0.6[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers201318: 17-27.
61 WINDEN B, KAWAMURA T, HUANG Z. Comparative self propulsion simulations of the JBC bulk carrier[C]?∥Proceedings of the Japan Society of Naval Architects and Ocean Engineers, 2015: 239-242.
62 LI Z H, YU J W, FENG D K, et al. Research on the improved body-force method based on viscous flow[C]?∥ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. New York: ASME, 2019.
63 PRANDTL L, BETZ A. Vier abhandlungen zur hydrodynamik und aerodynamik[M]. G?ttingen: G?ttingen University Press, 1927: 88-92.
64 WILSON R E, LISSAMAN P B S. Applied aerodynamics of wind power machines, national technical information service: PB-238595[R]. Eugene: University of Oregon, 1974.
65 WILSON R E, LISSAMAN P B S, WALKER S N, Aerodynamic performance of wind turbines: PB-259089[R]. Eugene: University of Oregon, 1976.
66 SHEN W Z, MIKKELSEN R, S?RENSEN J N, et al. Tip loss corrections for wind turbine computations[J]. Wind Energy20058(4): 457-475.
67 SHEN W Z, S?RENSEN J N, MIKKELSEN R. Tip loss correction for actuator/Navier-Stokes computations [J]. Journal of Solar Energy Engineering2005127(1): 209-213.
68 PANTEL H, FALISSARD F, DUFOUR G. Assessment of Reynolds-averaged Navier-Stokes/blade element theory body force method for propeller modeling[J]. AIAA Journal202462(2): 758-775.
69 ZHONG W, WANG T G, ZHU W J, et al. Evaluation of tip loss corrections to AD/NS simulations of wind turbine aerodynamic performance?[J]. Applied Sciences20199(22): 4919.
70 S?RENSEN J N, MYKEN A. Unsteady actuator disc model for horizontal axis wind turbines?[J]. Journal of Wind Engineering and Industrial Aerodynamics199239(1-3): 139-149.
71 WANG M Z, WAN D C, WANG J H. An improved BEMT model based on agent actuating disk with application to ship self-propulsion simulation[J]. Ocean Engineering2022266: 112787.
72 S?RENSEN J N, SHEN W Z, MUNDUATE X. Analysis of wake states by a full-field actuator disc model[J]. Wind Energy19981(2): 73-88.
73 MARTINEZ L, LEONARDI S, CHURCHFIELD M, et al. A comparison of actuator disk and actuator line wind turbine models and best practices for their use[C]?∥50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
74 STOKKERMANS T C A, VAN ARNHEM N, SINNIGE T, et al. Validation and comparison of RANS propeller modeling methods for tip-mounted applications[J]. AIAA Journal201957(2): 566-580.
75 ORTUN B. A coupled RANS/Lifting-Line analysis for modelling the aerodynamics of distributed propulsion [C]?∥AHS Technical Conference on Aeromechanics Design for Transformative Vertical Flight, 2018: 1-8.
76 PETERS A. Ultra-short nacelles for low fan pressure ratio propulsors[D]. Cambridge: Massachusetts Institute of Technology, 2014.
77 HALL D K, GREITZER E M, TAN C S. Analysis of fan stage conceptual design attributes for boundary layer ingestion?[J]. Journal of Turbomachinery2017139(7): 071012.
78 DAY I J. Stall inception in axial flow compressors[J]. Journal of Turbomachinery1993115(1): 1-9.
79 KOFF S G, GREITZER E M. Axisymmetrically stalled flow performance for multistage axial compressors[J]. Journal of Turbomachinery1986108(2): 216-223.
80 XU L. Assessing viscous body forces for unsteady calculations[J]. Journal of Turbomachinery2003125(3): 425-432.
81 HSIAO E, NAIMI M, LEWIS J P, et al. Actuator duct model of turbomachinery components for powered-nacelle Navier-Stokes calculations[J]. Journal of Propulsion and Power200117(4): 919-927.
82 DEFOE J, NARKAJ A, SPAKOVSZKY Z. A body-force based methodology for predicting multiple-pure-tone noise: validation[C]?∥16th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2010.
83 曾翰轩, 范腾博, 温孟阳, 等. 基于三维体积力模型的离心压气机喘振预测方法[J]. 航空动力学报202439(2): 182-192.
  ZENG H X, FAN T B, WEN M Y, et al. Surge prediction of radial compressors based on three-dimensional body-force method?[J]. Journal of Aerospace Power202439(2): 182-192 (in Chinese).
84 ZENG H X, ZHENG X Q, VAHDATI M. A method of stall and surge prediction in axial compressors based on three-dimensional body-force model[J]. Journal of Engineering for Gas Turbines and Power2022144(3): 031021.
85 SIMON J F. Contribution to through flow modelling for axial flow turbomachines?[D]. Liege: University of Liege, 2007.
86 KOTTAPALLI A P. Development of a body force model for centrifugal compressors[D]. Cambridge: Massachusetts Institute of Technology, 2013.
87 THOLLET W, DUFOUR G, CARBONNEAU X, et al. Body-force modeling for aerodynamic analysis of air intake–fan interactions[J]. International Journal of Numerical Methods for Heat & Fluid Flow201626(7): 2048-2065.
88 THOLLET W, DUFOUR G, CARBONNEAU X, et al. Assessment of body force methodologies for the analysis of intake-fan aerodynamic interactions[C]?∥ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016.
89 MAGRINI A. Body force model implementation of transonic rotor for fan/airframe simulations[J]. Aerospace20229(11): 725.
90 ANDREA M, ERNESTO B. Study of geometric parameters for the design of short intakes with fan modelling[J]. Chinese Journal of Aeronautics202235(11): 18-32.
91 XIE T B, URANGA A. Development and validation of non-axisymmetric body-force propulsor model?[C]?∥AIAA Propulsion and Energy 2020 Forum. Reston: AIAA, 2020.
92 THOLLET W. Body force modeling of fan-airframe interactions[D]. Toulouse: University of Toulouse, 2017.
93 DOSNE C, BARRIER R, BOURASSEAU S, et al. A first assessment of adjoint body-force modeling capabilities for fan design[C]∥AIAA SciTech 2024 Forum. Reston: AIAA, 2024.
94 MAGRINI A, BUOSI D, BENINI E. Sensitivity analysis of nacelle intake high-incidence aerodynamics including a body force fan model[C]∥AIAA SciTech 2021 Forum. Reston: AIAA, 2021.
95 MAGRINI A, BENINI E, BUOSI D. Design of short intakes for ultra-high bypass engines: Preliminary exploration at fixed incidence[C]∥AIAA SciTech 2022 Forum. Reston: AIAA, 2022.
96 MAGRINI A, BUOSI D, BENINI E. Assessment of engine modelling on the installed aerodynamics of an ultra-high bypass turbofan[C]?∥AIAA SciTech 2022 Forum. Reston: AIAA, 2022.
97 HALE A L, CHALK J, KLEPPER J, et al. Turbine engine analysis compressor code-TEACC. II-Multi-stage compressors and inlet distortion[C]?∥17th Applied Aerodynamics Conference. Reston: AIAA, 1999.
98 HALE A L, DAVIS M, SIRBAUGH J. A numerical simulation capability for analysis of aircraft inlet-engine compatibility[J]. Journal of Engineering for Gas Turbines and Power2006128(3): 473-481.
99 郭晋, 胡骏, 屠宝锋. 多级轴流压气机彻体力模型: 理论方法及简化应用[J]. 航空动力学报201833(8): 1954-1963.
  GUO J, HU J, TU B F. Body force model for multistage axial compressor: Theoretical method and simplified application[J]. Journal of Aerospace Power201833(8): 1954-1963 (in Chinese).
100 尹超, 胡骏, 郭晋, 等. 进气畸变对压气机性能影响的三维彻体力模型[J]. 航空动力学报201530(9): 2241-2250.
  YIN C, HU J, GUO J, et al. Three-dimensional body-force model for effect on compressor performance of inlet distortion[J]. Journal of Aerospace Power201530(9): 2241-2250 (in Chinese).
101 郭晋. 多级轴流压气机非设计状态性能及稳定性三维计算模型研究[D]. 南京: 南京航空航天大学, 2019.
  GUO J. Three-dimensional computational model investigation on performance and stability of multistage axial flow compressors in off-design state[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
102 周游天, 李军, 彭生红, 等. 插板进气畸变与压气机的耦合数值模拟[J]. 航空动力学报201732(3): 568-576.
  ZHOU Y T, LI J, PENG S H, et al. Numerical simulation of flat baffle inlet distortion coupled with compressor[J]. Journal of Aerospace Power201732(3): 568-576 (in Chinese).
103 谢豪, 李军, 周游天, 等. 基于体积力模型的高速压气机仿真研究[J]. 工程热物理学报201940(6): 1262-1267.
  XIE H, LI J, ZHOU Y T, et al. Simulation of high speed compressor based on body-force model[J]. Journal of Engineering Thermophysics201940(6): 1262-1267 (in Chinese).
104 KERNER J. An assessment of body force representations for compressor stall simulation[D]. Cambridge: Massachusetts Institute of Technology, 2010.
105 邱佳慧, 杨晨, 赵红亮, 等. 基于体积力模型的跨声压气机进气畸变数值模拟[J]. 航空动力学报202439(8): 447-457.
  QIU J H, YANG C, ZHAO H L, et al. Numerical simulation of transonic compressor with inlet distortion based on body-force model[J]. Journal of Aerospace Power202439(8): 447-457 (in Chinese).
106 杨阳. 压气机三维粘性彻体力稳定性分析模型及应用研究[D]. 西安: 西北工业大学, 2016.
  YANG Y. Investigation on three-dimensional viscous bulk body force model and its application[D]. Xi’?an: Northwestern Polytechnical University, 2016 (in Chinese).
107 安玉戈, 刘火星. 压气机进气畸变数值模拟技术研究[J]. 航空学报201233(9): 1624-1632.
  AN Y G, LIU H X. Numerical simulation of compressor with inlet distortion[J]. Acta Aeronautica et Astronautica Sinica201233(9): 1624-1632 (in Chinese).
108 QIU J H, YANG C, ZHANG W Q, et al. Body-force modeling considering induced upstream effects for a transonic compressor with total temperature distortion[J]. Chinese Journal of Aeronautics202437(6): 7-19.
109 万科, 朱芳, 金东海, 等. 周向平均方法在某风扇/增压级分析中的应用[J]. 航空学报201435(1): 132-140.
  WAN K, ZHU F, JIN D H, et al. Application of circumferentially averaged method in fan/booster?[J]. Acta Aeronautica et Astronautica Sinica201435(1): 132-140 (in Chinese).
110 金东海, 梁栋, 刘晓恒, 等. 航空发动机整机周向平均稳态仿真方法[J]. 航空动力学报202237(11): 2598-2616.
  JIN D H, LIANG D, LIU X H, et al. Steady state simulation method of whole aero-engine based on circumferentially averaged method[J]. Journal of Aerospace Power202237(11): 2598-2616 (in Chinese).
文章导航

/