电子电气工程与控制

工程系统定性理论及其在飞行控制中的应用

  • 史忠科
展开
  • 西北工业大学 自动化学院,西安 710072
.E-mail: zkeshi@nwpu.edu.cn

收稿日期: 2024-10-30

  修回日期: 2024-11-18

  录用日期: 2024-11-29

  网络出版日期: 2024-12-10

基金资助

国家自然科学基金(61933010)

Qualitative theory for engineering system and its application to flight control

  • Zhongke SHI
Expand
  • School of Automation,Northwestern Polytechnical University,Xi’an 710072,China
E-mail: zkeshi@nwpu.edu.cn

Received date: 2024-10-30

  Revised date: 2024-11-18

  Accepted date: 2024-11-29

  Online published: 2024-12-10

Supported by

National Natural Science Foundation of China(61933010)

摘要

同一工程系统存在的系统输入受限、模型的不确定性、环境干扰输入、系统突变或出现系统故障等工程问题,传统的状态能控性、能观测性等定性理论难以用于工程实际。为此,通过对系统模型不确定性的描述,分析了传统系统状态能控性、能达性存在的问题,通过对飞机舵机的系统输入受限、阵风等运行环境干扰产生的额外输入、飞机重载空投或空天飞机分离等系统突变或者系统故障进行模型描述,研究了系统在不同情况下的能控性、能稳性的判定问题,在此基础上提出了同一系统的状态、输出工程一致能控性的定义、判定方法,同时给出了系统状态、输出的工程一致能观测性定义。研究结果能够统一传统的系统能控性、能达性、能稳性判定,而且与经典控制中快速性、准确性判定具有相似性。针对高性能飞行器研制,给出了设计、风洞与飞行试验的分析、验证要求,通过实际纵向飞行控制器的设计结果对工程一致能控性进行了说明。

本文引用格式

史忠科 . 工程系统定性理论及其在飞行控制中的应用[J]. 航空学报, 2025 , 46(6) : 531463 -531463 . DOI: 10.7527/S1000-6893.2024.31463

Abstract

In engineering systems, challenges such as constrained system inputs, model uncertainties, environmental disturbance inputs, system mutations, or system failures often arise, making traditional qualitative theories like state controllability and observability difficult to apply. This paper describes the issues of traditional system state controllability and reachability through the analysis of model uncertainties. By modeling scenarios such as input constraints in aircraft actuators, additional inputs from environmental disturbances like gusts, system mutations during heavy airdrop or aerospace vehicle separation, and system failures, the paper investigates the controllability and stability determination for systems under these different conditions. On this basis, the paper proposes definitions and determination methods for the engineering consistent controllability of system states and outputs within the same system, and also provides a definition for the engineering consistent observability of system states and outputs. These conclusions are able to unify traditional judgments on system controllability, reachability, and stability, and are analogous to the rapidity and accuracy determinations in classic control. For the development of high-performance aircraft, the paper outlines the analysis and verification requirements for design, wind tunnel, and flight tests. An explanation of engineering consistent controllability is provided through the design results of an actual longitudinal flight.

参考文献

1 KALMAN R E. On the general theory of control[J]. IFAC Proceedings Volumes. 19601(1): 491-502.
2 CHEN C, DESOER C, NIEDERLINSKI A, et al. Simplified conditions for controllability and observability of linear time-invariant systems[J]. IEEE Transactions on Automatic Control196611(3): 613-614.
3 ZU C X, LI T, RAO B P. Sufficiency of Kalman’s rank condition for the approximate boundary controllability on a spherical domain[J]. Mathematical Methods in the Applied Sciences202144(17): 13509-13525.
4 CHAURASIA A, TRIPATHIS K, SHUKLA A, et al. Complete controllability of nonlinear neural network control systems[J]. Journal of Applied Nonlinear Dynamics202413(3): 583-590.
5 AYDIN M, MAHMUDOV N I. Relative controllability of nonlinear delayed multi-agent systems[J]. International Journal of Control202497(2): 348-357.
6 YANG Z X, WANG X F, WANG L.Controllabilityof networked sampled-data systems[J]. IEEE Transactions on Automatic Control202469(8): 5081-5093.
7 DANHANE B, LOHéAC J, JUNGERS M. Conditions for uniform ensemble output controllability, and obstruction to uniform ensemble controllability[J]. Mathematical Control and Related Fields202414(3): 1128-1175.
8 TOLSTYKH V K. Controllability of distributed parameter systems[J]. Computational Mathematics and Mathematical Physics202464(6): 1211-1223.
9 SAID A, AHMAD O U, ABBAS W, et al. Network controllability perspectives on graph representation[J]. IEEE Transactions on Knowledge and Data Engineering202436(8): 4116-4128.
10 MALIK M, KUMAR B. Controllability results for singular switched system on time scales[J]. Journal of Control and Decision202411(2): 180-189.
11 史忠科. 高性能飞机发展对控制理论的挑战[J]. 航空学报201536(8): 2717-2734.
  SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronauticaet Astronautica Sinica201536(8): 2717-2734 (in Chinese).
12 SHI Z K, WUF X. Robust identification method for nonlinear model structures and its application to high-performance aircraft[J]. International Journal of Systems Science201344(6): 1040-1051.
13 史忠科. 飞行器三维运动故障诊断和容错控制方法: ZL201310095792.0[P]. 2015-04-08.
  SHI Z K. Aircraft fault diagnosis and tolerant control based on three-dimensional motion model:ZL201310095792.0[P]. 2015-04-08 (in Chinese).
14 SHI Z K, FAN L. Bifurcation analysis of polynomial models for longitudinal motion at high angle of attack[J]. Chinese Journal of Aeronautics201326(1): 151-160.
15 PLUMER J A, FISHER F A, WALKO LC. Lightning effects on the NASA F-8 digital fly-by-wire airplane[R].Washington, D.C.: NASA, 1975.
16 DEYST J J, DECKERT J C. Application of likelihood ratio methods to failure detection and identification in the NASA F-8 DFBW aircraft[C]∥1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes. Piscataway: IEEE Press, 1975.
17 DEYST J, DECKERT J, DESAI M, et al.Development and testing of advanced redundancy management mathods for the F-8 DFBW aircraft[C]∥1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications. Piscataway: IEEE Press, 1977.
18 BRYSON A.Guest editorial: Mini-issue in NASA’s advanced control law program for the F-8 DFBW aircraft[J]. IEEE Transactions on Automatic Control197722(5): 752.
19 ELLIOTT J. NASA’s advanced control law program for the F-8 digital fly-by-wire aircraft[J]. IEEE Transactions on Automatic Control197722(5): 753-757.
20 STEIN G, HARTMANN G, HENDRICK R. Adaptive control laws for F-8 flight test[J]. IEEE Transactions on Automatic Control197722(5): 758-767.
21 DUNN H, MONTGOMERY R. A moving window parameter adaptive control system for the F8-DFBW aircraft[J]. IEEE Transactions on Automatic Control197722(5): 788-795.
22 GARRARD W L, JORDAN J M. Design of nonlinear automatic flight control systems[J]. Automatica197713(5): 497-505.
23 DECKERT J, DESAI M, DEYST J, etal. F-8 DFBW sensor failure identification using analytic redundancy[J]. IEEE Transactions on Automatic Control197722(5): 795-803.
24 MARTIN-SANCHEZ J M, Implementation of an adaptive autopilot scheme for the F-8 aircraft using the adaptive-predictive control system [C]∥Asilomar Conference on Circuits, Systems & Computers. Piscataway: IEEE Press, 1980.
25 BERRY D, POWERS B, SZALAI K, etal. Asummer of an in-flight evaluation of control system pure time delays during landing using the F-8 DFBW airplane:AIAA-1980-1626[R]. Reston: AIAA, 1980.
26 DECKERT J. Flight test results for the F-8 digital fly-by-wire aircraft control sensor analytic redundancy management technique:AIAA-1981-1796[R]. Reston: AIAA, 1981.
27 ENNSD F, BUGAJSKID J, KLEPL M J. Flight control for the F-8 oblique wing research aircraft[J]. IEEE Control Systems Magazine19888(2): 81-86.
28 SADHUKHAN D, FETEIH S. F8 neurocontroller based on dynamic inversion[J]. Journal of Guidance, Control, and Dynamics199619(1): 150-156.
29 SURESH S, OMKARSN, MANI V, et al. Direct adaptive neural flight controller for F-8 fighter aircraft[J]. Journal of Guidance, Control, and Dynamics200629(2): 454-464.
30 XIN Q, SHI Z K. Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack[J]. Chinese Journal of Aeronautics201528(1): 250-259.
31 MANURUNG A, KRISTIANA L, SYAFITRI N, et al. Revisiting the F-8 aircraft control problem with dynamic programming[C]∥2022 13th Asian Control Conference (ASCC). Piscataway: IEEE Press, 2022.
32 BISWAS B, IGNATYEV D, ZOLOTAS A, et al. Design of controller with enlarged region of attraction using union theorem in sum-of-squares optimization for the F-8 aircraft:AIAA-2024-1018[R]. Reston: AIAA, 2024.
33 SHI Z K. Interval criterion of robust stability for nonlinear system and its application to flight control[J]. Chinese Journal of Aeronautics200417(2): 99-105.
文章导航

/