针对下滑阶段舰尾气流和甲板运动对舰载机的干扰问题,本文结合直接升力技术开展基于预定义时间的增量非线性控制研究,以提高扰动下舰载机的着舰精度。首先,建立了舰载机全状态的非线性运动方程,并根据舰载机的特点,分析了直接升力技术着舰控制策略的机理和优势;其次,提出了一种基于预定义时间的增量控制方法,并基于该方法分别设计了舰载机姿态稳定回路、高度回路以及动力补偿系统的控制器。所设计的直接力自动着舰控制器能够在干扰影响下,确保舰载机状态的跟踪误差在用户设定的时间内一致收敛至可调范围内,从而增强了舰载机对着舰指令以及甲板运动的快速跟踪能力,并能够利用自身的鲁棒性来削弱舰尾气流对舰载机的影响;随后,在李雅普诺夫稳定理论下严格证明了所设计的自动着舰闭环系统的预定义时间稳定性;最后,通过一系列实时仿真验证了所设计自动着舰控制器的有效性和优越性。
To address the disturbance of carrier wake and deck motion, this paper combines direct lift technology and incremental nonlinear control based on predefined-time theory to improve the landing accuracy of carrier-based aircraft. Firstly, the full-state nonlinear dynamic equations of the carrier-based aircraft are established, and the mechanisms and advantages of the direct lift control technology are analyzed. Secondly, an incremental control method based on predefined-time theory is proposed, and an automatic landing controller for the carrier-based aircraft, consisting of the attitude stabilization loop, altitude control loop, and approach power compensation system, is designed based on this method. The designed automatic landing controller ensures that the tracking error of the carrier-based aircraft's state converges to an adjustable bounded range within a predefined time, even under the influence of dis-turbances, which enhances its ability to track landing trajectory commands and deck movements rapidly. Moreover, this controller utilizes its robustness to reduce the impact of the carrier wake on the carrier-based aircraft. Subsequently, the predefined-time stability of the automatic landing closed-loop control system is rigorously proven under the Lyapunov stability theory. Finally, a series of real-time simulations verify its effectiveness and superiority.
[1] Green B E, Findlay D. CFD Analysis of the F/A-18E Super Hornet during Aircraft-Carrier Landing High-Lift Aerodynamic Conditions[C]//AIAA Aerospace Scienc-es Meeting. 2015.
[2] 胡伟, 万文章,陈谋. 基于神经网络和干扰观测器的UAV自动着舰控制[J]. 航空学报, 2022, 43(S01): 72693.
[3] Duan H B, Chen L, Zeng Z G. Automatic Landing for Carrier-Based Aircraft Under the Conditions of Deck Motion and Carrier Airwake Disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems. 2022, 58(6): 5276-5291.
[4] Zhang Y, Wu W H, Wang J, et al. Prescribed perfor-mance adaptive constrained backstepping controller for carrier-based longitudinal landing with magnitude con-straints[C]// 2017 36th Chinese Control Conference (CCC), Dalian, China, 2017: 856-861.
[5] Wang L, Yuan D, Yuan Z X et al. Automatic landing of carrier-based aircraft based on a collaboration of fault reconstruction and fault-tolerant control[J]. Aerospace Science and Technology, 2024, 144: 108772.1-108772.15.
[6] Li Y, Liu X X, Zhao H, et al. Design of control law for Carrier-based Aircraft based on L1 adaptive con-trol[C]//2018 IEEE CSAA Guidance, Navigation and Control Conference. IEEE, Xiamen, China, 2018: 1-6.
[7] Denham J W. Project MAGIC CARPET: "Advanced Controls and Displays for Precision Carrier Land-ings"[C]//54th AIAA Aerospace Sciences Meeting. 2016.
[8] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术, 2018, 40(9): 2079-2091.
[9] 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J].航空学报, 2019, 40(4): 622328.
[10] 罗飞, 张军红, 王博, 等. 基于直接升力与动态逆的舰尾流抑制方法[J]. 航空学报, 2021, 42(12): 124770.
[11] 何胜涛, 江驹, 余朝军, 等. 基于自适应固定时间的直接升力着舰容错控制[J]. 电光与控制, 2023, 30(9): 29-35.
[12] 孙笑云, 江驹, 甄子洋, 等. 舰载飞机自适应模糊直接力着舰控制[J]. 西北工业大学学报, 2021, 39(2): 359-366.
[13] 柳仁地, 江驹, 张哲, 等. 基于强化学习的舰载机着舰直接升力控制技术[J/OL]. 北京航空航天大学学报, 1-17[2024-07-23]. https://doi.org/10.13700/j.bh.1001-5965. 2023.0403.
[14] Wu C H, Yan J G, Shen J H, et al. Predefined-Time Attitude Stabilization of Receiver Aircraft in Aerial Re-fueling[J] IEEE Transactions on Circuits and Systems II: Express Briefs,2021, 68(10): 3321-3325.
[15] Dong Y, Zou A M, Sun Z W. Predefined-Time Prede-fined-Bounded Attitude Tracking Control for Rigid Spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 464-472.
[16] Xie, S Z, Chen, Q. Adaptive Nonsingular Predefined-Time Control for Attitude Stabilization of Rigid Space-crafts[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 69(1): 189–193.
[17] Ni J K, Liu L, Liu C, et al. Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system[J]. Nonlinear Dynamics, 2016, 86(1): 401-420.
[18] Yu X, Wu Z J. Corrections to stochastic barbalat’s lem-ma and its applications[J]. IEEE Transactions on Auto-matic Control, 2014, 59(5): 1386-1390.
[19] H. K. Khalil, Nonlinear System, 3rd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2002
[20] Yang H J, Cheng L, Zhang J H, et al. Leader-Follower Trajectory Control for Quadrotors via Tracking Differ-entiators and Disturbance Observers[J]. IEEE Transac-tions on Systems, Man, and Cybernetics. Systems, 2021, 51(1): 601-609.
[21] Li Y, Liu X X, Ming R C, et al. Improved model refer-ence-based adaptive nonlinear dynamic inversion for fault-tolerant flight control[J]. International Journal of Robust, Nonlinear, and Control, 2023, 33(17): 10328-10359.
[22] 郭锁凤. 先进飞行控制系统[M]. 国防工业出版社, 2003.
[23] Li Y, Liu X X, Lu P, et al. Angular acceleration estima-tion-based incremental nonlinear dynamic inversion for robust flight control[J]. Control Engineering Practice, 2021, 117, 104938.
[24] Pollack, T, van Kampen, E. J. Robust Stability and Performance Analysis of Incremental Dynamic Inver-sion-Based Flight Control Laws[J]. Journal of Guid-ance, Control, and Dynamics, 2023, 46(9), 1785-1798.